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CHAPTER 1: INTRODUCTION 

 Cancer is the second leading cause of death worldwide and in the United States (American 

Cancer Society 2016). In America, it is estimated that there will be approximately 600,000 cancer-

related deaths and 1.6 million newly diagnosed patients in 2016 (AmericanCancerSociety 2016). 

Specifically, ovarian cancer is the leading gynecological malignancy in the United States, with an 

approximately 22,000 new diagnoses and 14,000 deaths every year. Ovarian cancer is a disease of 

highly complex origins. While many genetic/nongenetic risk factors have been associated with 

cancer, the process of initiation and progression, and specifically ovarian cancer, is not well 

understood.  

A number of studies demonstrate that, similar to other cancers, multi-level heterogeneity 

is a key feature of ovarian cancer (Bayani et al. 2002, Bayani et al. 2008, Dubeau 2008, TCGA 

2011). While much progress has been made towards understanding some aspects of ovarian cancer, 

progress has been slow as the 5-year survival rates have not changed significantly (Chan et al. 

2008, Siegel et al. 2012). A number of mutated and differentially expressed genes have been 

identified, yet these genes are only found in a small proportion of the patient population, where 

additionally, a large degree of heterogeneity exists in the mutation profiles and gene signatures of 

different individuals (Sieben et al. 2004, Gevaert et al. 2008, Konstantinopoulos et al. 2008, Cooke 

et al. 2010, TCGA 2011, Vereczkey et al. 2011). Interestingly, as newer technologies and 

techniques allow for the very specific molecular characterization of ovarian cancer, the complexity 

of the disease only increases (Heng et al. 2011b). The identification of a common pattern of genetic 

change is highly sought after in all cancer studies. However, while aiming for this goal, the large 

degree of heterogeneity, specifically genome-level heterogeneity (a characteristic feature of most 

cancers) is often overlooked (Heng 2009). 
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 The dismissal of multi-level heterogeneity is largely due to the conceptual and research 

methodologies that are used to characterize cancer cell populations. For example, popular methods, 

such as genome sequencing, RNA-seq, gene expression profiling, PCR and western blotting are 

powerful, but limited as they collect an average measurement across an entire population of cells, 

profiling only more dominant subpopulations and offering little or no information about outlier 

cells or side populations that may be more important for driving cancer evolution and promoting 

drug resistance. Furthermore, many of the aforementioned methods have been widely used to 

establish the current dominant conceptual framework of nearly all cancer-based research. In other 

words, most current cancer models depict the “average cancer cell.” However, average-based 

measurements do not accurately assess the genetic/nongenetic complexity of cancer cell 

populations, as they mask variation and ignore heterogeneity and single outlier cells that may be 

more important for cancer evolution. Furthermore, as genomic clonality is assumed, genome-level 

heterogeneity and the role of outlier cells have not been properly incorporated into the conceptual 

framework of cancer evolution, as they are disregarded or not measured, due to the focus on clonal 

changes. This signifies a need to re-evaluate the current understanding of somatic cell and cancer 

evolution, and the role of outlier cells in promoting the cancer evolution process. 

 Recent large scale genome sequencing and other ‘omic profiling studies have forcefully 

brought heterogeneity into the spotlight (Horne et al. 2015a, Heng et al. 2016). While 

heterogeneity is recognized as the key challenge in cancer research and cancer therapeutics, the 

mechanism of how it is generated and maintained is not well understood. According to 

conventional views of somatic cell genetic inheritance, the passing of inheritance is precise and 

errors that lead to genetic variation are low. However, this conceptual framework of inheritance 

greatly contradicts the data generated from large-scale sequencing studies that revealed a large 
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degree of heterogeneity, signifying a need to re-examine the process of inheritance in somatic 

cells. In this dissertation, a novel concept termed fuzzy inheritance is presented that provides a 

mechanism for the regulation and maintenance of cell population heterogeneity. Fuzzy inheritance 

is defined as a mechanism for cellular adaptation that regulates and generates cell population 

heterogeneity, where a given degree of heterogeneity is passed from mother cells to daughter cells. 

According to fuzzy inheritance, every somatic cell population exhibits a given degree of 

heterogeneity, and future cell populations can inherit that same degree of heterogeneity. Fuzzy 

inheritance is a novel concept, as it provides a mechanism for the regulation and maintenance of 

cell population heterogeneity, and especially cancer cell heterogeneity. 

Brief introduction of clonal evolution in normal and cancer cells 

 Cancer is a disease of somatic cell evolution, as normal cells undergo a large degree of 

genetic or genomic change which lead to cancer. This process of genetic change has been 

compared to organismal evolution (Heng et al. 2006c, Merlo et al. 2006). Both organismal 

evolution and cancer evolution exhibit the basic principles of natural selection: genetic variation, 

competition, and inheritance (Merlo et al. 2006, Heng et al. 2010, Gillies et al. 2012). Many 

different conceptual models have been proposed to characterize cancer evolution. Of the multiple 

models that exist, clonal evolution has remained the most dominant model used by cancer 

researchers and clinicians. 

 The process of clonal expansion is relatively straightforward. Clonal evolution is the 

dominant form of somatic cell evolution for both normal cells and cancer cells. In normal cell 

populations, mitosis occurs with high fidelity, where a mother cell divides into two nearly identical 

daughter cells. During cell division, errors generated at low frequencies are accumulated as they 

are passed to future daughter cell populations. The average genomic mutation rate of normal 
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somatic cell division has been estimated to be 11.63x10-9 (Lynch 2009). Given this low degree of 

change, it would thus take a long time to accumulate a large degree of genetic change.  

Clonal evolution of cancer was first proposed by Peter Nowell in 1976 (Nowell 1976). The 

process of mutation and selection are the same in cancer cells, however in cancer, 

genetic/nongenetic changes are reported to occur in specific oncogenes or tumor suppressor genes. 

Those changes that exhibit some phenotypic advantage consistent with cancer hallmarks will 

become dominant and are passed down (Hanahan and Weinberg 2011). Consequently, one or few 

cells will have accumulated enough genetic change and clonally expand into a tumor. The end 

product is a tumor composed of cells that theoretically can be traced to the founder clone. Recent 

studies have demonstrated that as few as 3 sequential driver mutations are necessary for tumor 

formation in some cancer types, like lung and colon adenomacarcinomas (Tomasetti et al. 2015). 

Previous studies have estimated a minimum of 6 or 7 mutations are necessary for tumor formation 

in other cancers (Nordling 1953). 

 Clonal evolution was confirmed in various experimental models. Of note, the Vogelstein 

group was the first to find a genetic basis for colorectal cancer (Fearon and Vogelstein 1990). This 

involved the accumulation, in a specific order, of mutations in various oncogenes and tumor 

suppressor genes, resulting in the formation of an adenoma, followed by a late adenoma, and 

finally a carcinoma. The adenoma-carcinoma sequence in colorectal cancers served as a general 

model for solid tumor formation and charged researchers to search for similar accumulated gene 

mutations in other cancer types. 

An example of clonal evolution was observed in chronic mylogenous leukemia (CML), 

where a translocation between chromosomes 9 and 22 detected in a large number of patients led 

to the formation of a new gene known as BCR-ABL (Horne et al. 2013). Targeted therapy of this 
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particular gene fusion as an initial therapy for chronic phase patients has largely been successful, 

as 5-year survival is 89% (Druker et al. 2006). The success of CML combined with the work of 

the Vogelstein group prompted for the search for other highly penetrant gene mutations, clonal 

chromosomal aberrations and other genetic anomalies in nearly all other cancer types (Horne et al. 

2013). 

Challenges in clonal evolution theory   

While cancers that are more stable, like CML, exhibit clonal aberrations, it has been rather 

difficult to identify clonal genetic/genomic aberrations in other cancer types, especially in solid 

tumors. Over 61,000 clonal chromosomal aberrations (CCAs) have been identified across nearly 

all cancer types (Duesberg and McCormack 2013) An even larger number of nonclonal 

genetic/genomic aberrations, particularly at the karyotype level, have been observed across nearly 

all cancer types, but these nonclonal changes remain unreported  (Heng et al. 2006b, Heng et al. 

2006c, Heng et al. 2013b, Heng 2016).  A number of gene mutations or chromosome abnormalities 

have been identified, but their presence in the general patient population is extremely limited 

(Wood et al. 2007, Vogelstein et al. 2013). Therefore, the success enjoyed by the clonal cancers 

like CML remains an exception. 

More recent initiatives to identify patterns of clonal evolution in cancer involve the genome 

sequencing of thousands of cancer genomes and multi-region sequencing of tumors (Collins and 

Barker 2007, TCGA 2011, Gerlinger et al. 2012). These studies overwhelmingly confirmed that 

heterogeneity is a dominant and key feature of nearly all cancer types and that precise, clonal 

change was minimal. This will be discussed in more detail in a later section in Chapter 1, entitled 

Multi-level heterogeneity in ovarian cancer. 
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Multi-region sequencing represents another experimental platform to detect clonal 

evolution. Two studies completed in clear cell renal carcinoma (Gerlinger et al. 2012, Gerlinger et 

al. 2014) and one in high-grade serous (HGS) ovarian cancer (Bashashati et al. 2013) performed 

multi-region exome sequencing of single tumors and/or metastatic sites to determine the genetic 

evolutionary history of each cancer. Phylogenetic analysis was completed to temporally identify 

truncal or conserved mutations. Interestingly, in both clear cell renal carcinoma studies, only one 

truncal gene mutation was detected in the VHL gene. No other gene mutations were identified as 

truncal, as most mutations were not detected across all or most regions. Most driver mutations 

were located in spatially separated subclones, and the number of drive mutations increased with 

every region sequenced. Similar results were observed in the high-grade serous ovarian cancer 

study, where each sample was genetically and spatially separated from others. With the exception 

of a mutation in TP53, most mutations were not shared across each sample. Furthermore, driver 

mutations in all studies were detected later in the cancers history as opposed to being early driving 

events. In both cancer types, an ancestral clone may have exhibited the one truncal or common 

mutation (VHL in CCRC; TP53 in HGS), however most other drivers were not detected in a 

sequential or linear fashion as theoretical clonal evolution would predict. Altogether these data 

demonstrate that neither linear clonal or branched clonal evolution does not occur in the clinical 

situation.  The data further demonstrates that heterogeneity or noise is an overwhelmingly 

dominant feature of most cancer types. Most importantly, multi-region sequencing demonstrates 

that even precise changes are not passed over a number of cell divisions, as each tumor region was 

spatially disconnected from its neighboring region.  

 Conceptual limitations of clonal evolution 
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Fundamental conceptual gaps exist in the current study of cancer evolution. While clonal 

evolution is the dominant conceptual model used in cancer research, it poses significant challenges 

in furthering the understanding of the disease. Multi-level heterogeneity is a key feature of cancer 

evolution, and is widely acknowledged as the foremost challenge for current cancer research 

(Heppner 1984, Heng et al. 2009), however it is consistently unaccounted for in the most common 

conceptual models and experimental approaches. A second major challenge is the disregard of 

stochastic variation, particularly at the genome level. The main experimental framework over the 

last several decades has directed the field to search for the molecular magic bullet, a single or 

collection of mutations that can be targeted to cure cancer. However, these reductionist approaches 

that describe cancer evolution through a series of sequential and accumulated mutations ignore the 

overwhelming complexity that is a characteristic feature of cancer. Because cancer is a genome-

defined systems disease, the tracing of individual gene mutations may not provide further insight 

into understanding the disease. These genes may be highly significant under defined laboratory 

conditions, but their role in natural settings are often more difficult to characterize due to the high 

level of genome heterogeneity. Natural settings are governed by a large degree of stochasticity, 

where it becomes difficult to detect cause and effect relationships for a particular gene in cancer 

(Capp 2005, Heng et al. 2011a, Heng et al. 2013a). Genome-level stochasticity is a dominant 

feature of cancer evolution, and it minimizes the importance of identifying single gene or linear 

changes, and it makes large scale genome change the driving force of cancer evolution (Heng et 

al. 2006c, Heng 2009, Heng et al. 2010, Heng et al. 2011a, Heng et al. 2013a, Liu et al. 2014).  A 

shift in the conceptual framework that places heterogeneity at the forefront, i.e., genome-level 

heterogeneity, is crucial for furthering the current understanding of how heterogeneity drives 

cancer evolution and for understanding the cellular basis of heterogeneity. A greater understanding 
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of cancer evolution can be attained by monitoring the frequency of clonal and nonclonal change, 

particularly at the genome level (Heng et al. 2006c, Heng et al. 2011a, Heng et al. 2013a).  

 Technical limitations of tracing clonal evolution 

There are also technical limitations in the validation of clonal evolution conceptual 

framework. Intra-tumor multi-level heterogeneity is a characteristic feature of most cancers (Heng 

et al. 2006a, Navin et al. 2011, Wang et al. 2014). However, routine technical methods used to 

study cancer evolution present significant limitations in the characterization and understanding of 

cell population dynamics, as they profile the average cell (Pelkmans 2012, Abdallah et al. 2013). 

As previously mentioned, the average cell does not accurately depict unstable cancer cells.   

The use of the average also poses significant challenges to clinical application of cancer 

research, such as the use of chemotherapy. Average-based technologies and methods of analysis 

have been used to develop treatment that is specific to an oncogene or particular cancer phenotype, 

like fast proliferation. These treatments are tailored for a specific feature of cancer in a 

heterogeneous tumor mass, and will only eliminate specific subpopulations, leaving behind outlier 

cells or even forming drug resistant cells with altered genomes. Because these cells are so rare, 

they are not usually detected through average-based methods. Therefore the misrepresentation of 

cancer cell populations through the exclusion of heterogeneity challenges the validity and utility 

of most cancer research completed in heterogeneous cancer samples. 

Multi-level heterogeneity in ovarian cancer 

Like most other cancer types, ovarian cancer exhibits a high degree of multi-level 

heterogeneity. Ovarian cancer pathogenesis has been widely debated over the last several years 

due to its complex origins and diverse causes or risk factors (Dubeau 2008, Bast et al. 2009, Birrer 

2010). Heterogeneity has been extensively documented at multiple genetic levels including the 
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gene, protein, epigenetic and genome levels (Bayani et al. 2002, Roschke et al. 2002, Khalique et 

al. 2007, Bayani et al. 2008). Multiple subtypes of ovarian cancers have been identified through 

the use of high-throughput technologies. Each subtype exhibits distinct morphological and 

molecular features (Kobel et al. 2008, Soslow 2008, Tothill et al. 2008).  

Despite the stratification of ovarian cancers into these distinct subtypes, heterogeneity 

remains a challenge as genetic markers used to distinguish subtypes are heterogeneous in 

penetrance. For example, CA125 is a genetic marker commonly used for the ovarian cancer 

screening (Bast et al. 1998, Moss et al. 2005). However, its lack of specificity for ovarian cancer 

and its diverse penetration among ovarian cancer patients makes its use as a biomarker unreliable. 

Specific subtypes of ovarian cancer exhibit elevated CA125 expression, and its expression is not 

uniform across all patients. Additionally, elevated CA125 expression has also been observed in 

ovarian benign lesions, endometriosis and other non-malignant gynecological conditions. Finally, 

levels of CA125 expression have also been reported to rise during menstruation and pregnancy 

(Meden and Fattahi-Meibodi 1998, Kafali et al. 2004, Nossov et al. 2008, Ercan et al. 2012). 

Attempts have been made to combine CA125 expression with other genetic markers or diagnostic 

techniques. For example, CA125 expression has been combined with HE4 expression to improve 

the outcome of early screening in an approach known as ROMA. The combined approach has 

enjoyed some initial success, however there has been no significant improvement to early detection 

(Jacob et al. 2011, Van Gorp et al. 2011). While aconsiderable degree of overlap between healthy 

controls, benign masses, and epithelial and non-epithelial ovarian tumors exist, ROMA does not 

outperform HE4 alone and/or CA125 alone (Cho et al. 2015, Zhang et al. 2015). 

 Similar to other cancers, ovarian cancer is presented with challenges related to detecting 

common biomarkers. Genome sequencing and gene expression studies have amassed a large 
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amount of molecular data, however the clinical application of this data has been difficult to 

ascertain (Capp 2005, Wood et al. 2007, Heng et al. 2011b, Huang 2012, Roberts et al. 2012, Yates 

and Campbell 2012). While identified genes can be grouped into clinically relevant pathways, 

these pathways face the same challenges of limited overlap as the genes found within that pathway. 

Additionally, cancer cells exploit “pathway switching,” where a cancer cell can switch to a 

different pathway if the dominant pathway has become nonfunctional. Due to the overwhelming 

karyotypic heterogeneity found in cancer cells, and especially ovarian cancer cells, there is 

unlimited potential for pathway switching (Stevens et al. 2013, Stevens et al. 2014). In summary: 

precise genetic changes in most cancers are a rare event; randomness or noise significantly 

outnumber those few changes that are precise; and most targets continuously change. The 

following sections present evidence to support these findings at every genetic level. 

 Genome-level heterogeneity in ovarian cancer 

Cytogenetic and genome-level profiling has been completed in ovarian cancer in order to 

identify markers of genetic/genomic change that are related to ovarian cancer pathogenesis, disease 

progression, or drug resistance. Chromosome change is widespread in all subtypes of ovarian 

cancer, and especially high grade serous ovarian cancers (Bayani et al. 2002, Rao et al. 2002, 

Hoglund et al. 2003, Bayani et al. 2008). Many incidences of numerical chromosome instability 

have been reported, including regions in the following chromosomes: -3, -4, -6, -8, -11, -13, -15, 

-17, -18, -22, -X, +1, +2, +3, +6, +7, +8, +9, +12, and +20 (Pejovic et al. 1992, Taetle et al. 1999, 

Bayani et al. 2002, Jin et al. 2004). Many regions of structural breakpoints have also been 

identified, including regions in the following chromosomes: 1p, 1q, 2q, 3p, 3q, 5p, 5q, 6p, 6q, 7p, 

7q, 8p, 8q, 11p, 11q, 12q, 13p, 13q, 17q, 19p, and 21p (Pejovic et al. 1992, Taetle et al. 1999, 

Bayani et al. 2002, Jin et al. 2004). Widespread chromosome change is also observed in ovarian 
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cancers that have mutations in TP53 and BRCA1/2, and in spontaneous ovarian cancers (Koul et 

al. 2000, Lawrenson 2010). In all of the studies analyzed, there has been no single or collection of 

chromosomal aberrations that is common to all ovarian cancer patients, regardless of the subtype 

analyzed.  

While many widespread changes have been identified, these incidents include only those 

aberrations that are clonal. A significantly larger number of nonclonal structural and numerical 

changes remain unreported or ignored due to the intense focus of identifying clonal change. 

Despite the many studies devoted to identifying specific chromosome regions that are commonly 

deregulated in ovarian cancer, the only common feature that links all ovarian cancer is the large 

degree of genome-level heterogeneity. In other words, the data seems to indicate that there is 

significantly more noise than any precise chromosomal change.   

 Whole genome sequencing 

 The Cancer Genome Atlas (TCGA) is a large-scale cancer genome sequencing (and other 

omic) initiative that sought to identify all genetic/genomic variants involved in cancer evolution 

by sequencing a large enough sample to capture all or most mutated genes involved. Prior to the 

TCGA, a number of mutated genes had been identified but were present at low frequencies among 

patients. Exome sequencing was completed on a pilot study which included the sequencing of 316 

high grade serous ovarian cancers (TCGA 2011). Overall, the results of the study confirmed the 

large degree of multi-level heterogeneity, especially gene mutation heterogeneity, observed in high 

grade serous ovarian cancer. Specifically, TP53 was mutated in over 90% of the samples. Other 

statistically significant mutations included: BRCA1, BRCA2, NF1, RB1, CSMD3, GABRA6, 

FAT3, and CDK 12 were found in 2%-9% of samples. A number of statistically significant 

mutations were identified, however the sequencing of a larger number of tumors may not bring 
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new insight into understanding ovarian cancer evolution due to the stochastic nature of cancer 

evolution (Heng 2007a). Against the initial expectations of many researchers, the TCGA did not 

identify previously reported gene mutations at high significance. For example, individuals with 

mutations in RAD51 have an increased susceptibility to developing cancer, yet it was only mutated 

in one single patient. Additionally, while they have not been previously linked to ovarian cancer, 

the TCGA study also identified novel genes CSMD3, GABRA6, and FAT3 related to ovarian 

cancer as highly significant. The rise of large-scale sequencing studies has significantly increased 

the number of statistically significant but clinically irrelevant gene mutations, or gene mutations 

that are so infrequent, they do not warrant clinical studies. Many of these genes are designated as 

passenger mutations because they do not seem to alter the fitness of the cancer and are thus ignored. 

Furthermore, many mutated genes identified from sequencing studies are members of clinically 

important pathways. More recent initiatives have been aimed at targeting these more common 

pathways. While this approach may seem reasonable, it does not address the fact that cancers are 

highly evolvable and readily undergo pathway switching during the evolutionary process (Stevens 

et al. 2013, Stevens et al. 2014). The number of and specific mutated genes will only increase due 

to pathway switching. Any further large scale sequencing initiatives in cancer will only result in 

the addition of more cancer genes. This observation was first made nearly one decade ago (Heng 

2007a) and only recently has there been some discussion over the clinical utility of the sequencing 

approach (Kaiser 2012, Yates and Campbell 2012, Watson 2013).   

 Interestingly, the results obtained by the TCGA ovarian cancer sequencing project 

demonstrate that gene mutation profiles are highly heterogeneous and discontinuous between 

different subtypes. This indicates most ovarian cancer patients do not exhibit the same 

accumulated mutations as would be expected under stepwise, clonal evolution. Rather, the data 
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that revealed a large degree of heterogeneity suggests that cancer evolves through punctuated 

evolution. This observation indicates that, in contrary to stepwise clonal evolution, gene mutations 

found in early stages are commonly not detected at later stages (Heng 2007a, Heng et al. 2010). It 

is known that mutations in TP53 are highly penetrant in high grade serous ovarian cancers, but it 

is not readily detectable in other subtypes. Increased attention to the link between TP53 mutations 

and chromosome instability (CIN) is needed due to the integral role CIN plays in cancer evolution 

(Heng et al. 2013a). The relationship between TP53 and CIN is more likely a result of genome 

destabilization as opposed to oncogene-mediated molecular pathways.  

 Gene expression profiling 

 In addition to genome sequencing, whole genome microarray studies have been performed 

in order to understand aberrant gene expression patterns in ovarian cancer samples, specifically of 

the high grade serous subtype. Gene expression profiling is a commonly used high throughput 

method to identify aberrant gene expression for cancer evolution, resistance, and disease 

prognosis. Some initial studies revealed that ovarian cancer is characterized by heterogeneous gene 

expression patterns, as differentially expressed genes were widely patient-specific (Hough et al. 

2000, Bayani et al. 2002, Jazaeri et al. 2002). Subsequent studies demonstrated a number of ovarian 

cancer subtypes characterized by specific molecular signatures (Welsh et al. 2001, Yousef et al. 

2003, Bast et al. 2009). While these studies provide a wealth of information regarding ovarian 

cancer gene expression, the gene expression profiles varied widely across patient samples, 

suggesting that gene expression is patient and tumor specific.   

For example, prognostic gene signatures are an application of gene expression profiling 

used to determine gene sets that confer patient prognosis. However, similar to genome sequencing, 

prognostic gene signatures also exhibit considerable heterogeneity. While some early studies may 



www.manaraa.com

  14 
 

have demonstrated some promising results, additional studies have demonstrated the limited 

ability of gene prognostic signatures to be validated by independent studies (Konstantinopoulos et 

al. 2008). More recent attempts to improve the prognostic capability of gene signatures involved 

the integration of multiple datasets to generate and validate signatures for a specific subtype. 

Separation by subtype was intended to eliminate any heterogeneity observed among gene 

expression. Despite this effort, considerable heterogeneity among different gene prognosis 

signatures was still evident. To demonstrate this, a comparison of four different gene prognostic 

signatures was completed on high grade serous ovarian cancers to identify any common genes 

(Bonome et al. 2008, Yoshihara et al. 2010, TCGA 2011, Verhaak et al. 2013). Comparison of the 

studies revealed low overlap of gene signatures, where the maximum overlap between any two 

studies was less than 30% (Figure 1). Gene overlap between three studies fell drastically to 3%-

8%. Overlap between all studies revealed no common genes. Interestingly, two studies (TCGA, 

Veerhak) used the same datasets to generate their prognostic signatures. The TCGA used 285 of 

the 489 samples available to generate a 193 gene signature, while the Veerhak study used the full 

489 samples to generate a 100 gene signature. While the two studies used much of the same 

samples, only 34 genes overlapped between the two studies. This likely occurred because new 

statistically significant aberrantly expressed genes are introduced with the addition of a single gene 

expression profile, which suggests that the gene expression behind the prognostic signatures are 

patient specific. A similar finding was observed when comparing different datasets of miRNA 

signatures in ovarian cancer (Wan et al. 2014). Interestingly in a breast cancer study, Venet et al 

produced random gene expression signatures and found over 90% of the randomly generated 

signatures (over 100 genes/signature) can discriminate between good or bad prognosis more 

efficiently than the gene signatures obtained from breast cancer patients (Venet et al. 2011).  
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Epigenetic heterogeneity in ovarian cancer 

Many recent efforts have intensely focused on epigenetic dynamics in ovarian cancer, 

including methylation profiling, miRNA, shRNA, and histone modifications, with the purpose of 

identifying specific ovarian cancer markers (TCGA 2011, Almendro et al. 2013, Tang et al. 2015, 

Bai et al. 2016). Specifically, methylation profiling has been an intense area of research given the 

new technologies that allow for the whole genome detection of methylation sites at high resolution. 

Global changes in DNA methylation is a hallmark feature of most cancers, including ovarian 

cancer. Both hypermethylation and hypomethylation have been observed in ovarian cancer 

(Widschwendter et al. 2004). Despite the intense research in whole genome methylation profiling 

in cancer, the results of these studies are similar to genome sequencing studies, as there seems to 

be little common loci among patients. Therefore, similar to genome sequencing studies, the large 

degree of methylation heterogeneity is the common factor that links methylation profiling of tumor 

samples. For example, the TCGA ovarian cancer pilot completed methylation profiling on DNA 

promoter regions for the 489 high grade serous tumors using the Illumina Beadchip platform, in 

addition to genome sequencing and gene expression profiling. Compared to fallopian tube 

controls, 168 genes were hypermethylated. The following genes AMT CCL21, and SPARCL1 

were silenced in most of the 489 tumors. Also silenced in a substantial number of tumors was 

RAB25, which ironically has been previously shown to be overexpressed and amplified (Cheng et 

al. 2004). Additionally, BRCA1 was epigenetically silenced in 56 of 489 tumors. Comparison of 

the 168 gene list generated by the TCGA to other methylation profiling studies of high grade serous 

ovarian cancer using the Illumina platform found that only 2 genes in common, IGF1 and MFAP4 

(Yoon et al. 2010). In addition, the TCGA identified SPARCL1 as hypermethylated, while the 

Yoon study identified its paralog SPARC as hypermethylated. Clearly the identification of 
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common aberrant methylated loci faces the same challenges as identifying common gene 

mutations.  

Integrated data profiles 

Regardless of the molecular genetic level being analyzed, statistically significant but lowly 

penetrant deregulated loci are prevalent and pose significant challenges for cancer therapy. It has 

become increasingly apparent that emphasis on a single or handful of genes at a single genetic 

level will not be sufficient for improved cancer treatment. In order to develop more effective 

treatment strategies, efforts aimed at integrating information from multiple genetic levels, 

including gene mutations, copy number alterations, mRNA expression, microRNA profiles, and 

DNA methylation, have been completed in a number of different cancer types, including ovarian 

cancer (Mankoo et al. 2011, Weinstein Jn Fau - Collisson et al. 2013, Zhang et al. 2013, Kim et 

al. 2014).  

The 2011 TCGA ovarian cancer pilot was the first study in ovarian cancer to integrate 

genetic information from multiple genetic levels in order to find commonly deregulated pathways 

(TCGA 2011). The study found at least one member in the following pathways to be deregulated: 

RB signaling (67%), PI3K/RAS signaling (45%), NOTCH signaling (22%), homologous 

recombination (51%), and FOXM1 signaling (84%). Therefore, the integration of multiple genetic 

levels does result in the occurrence of more commonly deregulated pathways among a larger 

patient population. While this seems like a promising approach, the integration of data profiles 

may face some significant challenges, as it does not incorporate stochastic genome level change 

that is a characteristic feature of cancer. 

Figure 1: Limited gene overlap among various prognostic gene signatures 
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Four studies were completed in HGS ovarian cancer that generated prognostic gene signatures 

(Bonome et al. 2008, Yoshihara et al. 2010, TCGA 2011, Verhaak et al. 2013).  Studies were 

compared against each other to determine the number of common genes. Comparison any between 

two studies greatly reduced the number of common genes, where the number of common genes 

ranged between 3-37. When comparing any three studies, the number of common genes dropped, 

ranging from 0-7 genes. No common genes were found in all four studies. *Not pictured: 4 genes 

were found in common between the TCGA and Yoshihara studies. **ND=not determined.   

The TCGA ovarian cancer data has been used by many groups in order to create their own 

lists of genetic/nongenetic features that detect prognosis or overall survival (Mankoo et al. 2011) 

or to identify novel subtypes that have some prognostic or survival value (Zhang et al. 2013, Kim 

et al. 2014). Mankoo et al used a multivariate Cox lasso model and an algorithm predicting median 

time-to-event to develop two signatures: a 156 feature signature that predicts prognosis, and a 182 

feature signature that predicts overall survival. The progression free signature (PFS) was able to 

significantly discriminate between low-, intermediate-, and high-risk groups. Furthermore, the 156 

features of the PFS signature were found to be members of 23 pathways of statistical significance, 

including Phospholipase c signaling and MAPK signaling. Eighty-five of the 156 features listed 

in the PFS signature were mRNA entities. Interestingly, when compared to previous gene 
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expression profiling signatures (Bonome et al. 2008, Tothill et al. 2008, Yoshihara et al. 2010, 

TCGA 2011, Verhaak et al. 2013), only five genes overlapped with the gene expression signature 

of the Veerhak study (CHIT1, SDF2L1, PHKA1, CITED2, and SLC37A4), two genes overlapped 

with the Yoshihara gene expression signature (ID4 and SLC2A11), and two genes were found in 

common with the original TCGA gene expression signature (ID4 and SLC2A11). Clearly, the 

problem of limited overlap also exists when comparing integrated data to previous studies, even 

when the studies use the same datasets. This further highlights that stochasticity and noise are 

inherently dominant features of cancer, and regardless of how many datasets being processed, 

common change will always be significantly outnumbered noise. 

Zhang et al developed an adaptive clustering algorithm followed by an unsupervised super 

k-means clustering algorithm to stratify mRNA profiles, miRNA profiles, DNA methylation 

profiles and copy number profiles into 7 novel subtypes of ovarian cancer with significantly 

different median survival times (Zhang et al. 2013). The subtypes could be distinguished by 36 

features, although these features were not made publically available. Of particular importance, 

subtype 2, designated as a bad prognosis subtype, was enriched for many cancer-related functions 

such as cell adhesion and angiogenesis, and various EMT and stem cell-related genes. Subtype 2 

was also validated by other external datasets, while no mention was made of the validation for the 

other 6 subtypes. The clustering algorithm identified many molecular features for each subtype, 

some that were unique to a specific subtype and many other features that overlapped across a 

number of subtypes. For example, subtype 6 demonstrated an overall good prognosis and exhibited 

a deletion in chromosome regions 19q13.2-19q13.43 and amplifications in chromosome regions 

12p13.33-p11.22 and 20p13-q13.2. Interestingly, subtypes 4 and 5 also exhibited the same 

amplifications, but both were designated as subtypes with bad prognosis. This suggests that the 
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clinical and/or prognostic value of specific genes or chromosome regions is not definitive and can 

change as cancer evolves or with the addition of new data. Integrating the data of additional 

patients may change the specific molecular features of some subtypes, or alter the subtype 

classification altogether. Regardless of the volume of data analyzed, the stochastic evolvability of 

cancers suggests that the integration of data will see limited results. 

 A final study that utilized integrated data completed by Kim et al generated a classification 

system that used semi supervised learning to examine the relationship among patients, assuming 

that patients with more similar data profiles had similar clinical outcomes (Kim et al. 2014). While 

no signature of features was provided, the semi supervised learning classification system was able 

to differentiate between short-term vs long-term survival, early stage vs late stage, and low grade 

vs high grade in ovarian cancer, and short-term vs long-term survival and initial diagnosis vs tumor 

recurrence in gliobastoma multiforme. Similar to many other studies, integration of genomic 

profiles demonstrated that while patients may have similar genetic profiles, they have drastically 

different survival outcomes. Furthermore, integrated data did not significantly increase area under 

the curve (AUC) values, as compared with individual genetic levels. For example, the ovarian 

cancer gene expression AUC value that predicted survival was 0.7651, while the AUC value for 

integrated data was 0.7867. Similarly, the AUC value differentiating early and stage was 0.8767 

for copy number alterations alone while the AUC value for the integrated data was 0.8932. In this 

case, the integrated profile did not significantly add more value than individual genetic signatures.  

Taken together, it seems that there are some significant challenges and limitations related 

to the current efforts integrating data. First, integrated profiles represent a single snapshot of the 

entire cancer evolutionary process. During punctuated macro-cellular evolution where stochastic 

genome replacement is the driving force, the molecular profiles will dramatically change due to 
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pathway switching that gives cancer cells endless avenues to pursue for their continued 

survival.(Heng et al. 2006c, Stevens et al. 2014)  Therefore, this suggests that the clinical relevance 

of integrated data profiles is limited (Heng 2016, Horne S.D. 2016). This further underscores the 

fact that despite the large number of data, patients, or information being processed, stochasticity 

is a dominant feature in cancer and genetic profiles will change throughout the evolutionary 

process  

Second, while each study used the same TCGA ovarian cancer data set, there seems to be 

limited overlap in feature lists with previous datasets. For example, the mRNA entities of the 

Mankoo et al PFS 156-feature signature exhibited little overlap with previous gene expression 

prognostic signatures. The identification of common pathways represents a new strategy to 

overcome the issue of limited overlap. However, the broad selection of an entire pathway or 

cellular process is vague or over-generalized and may not provide specific targetable action for 

treatment purposes. For example, MAPK signaling, TGF-beta signaling, and WNT signaling, 

among others, were identified in the Zhang et al study as common pathways or networks. The 

TCGA study also identified a number of pathways that were previously listed. The next logical 

step after identifying a common pathway is selecting a specific target. The question of which target 

to choose becomes especially difficult, as specific targets are not common to a larger patient 

population. The strategy is circular and faces the same challenges as identifying common genes. 

Furthermore, most of the identified pathways are cellular pathways actively used by normal cells 

and are not specific to any cancer type. The selection of a pathway that is integral to both normal 

and cancer cells may result in more negative consequences. 

New discoveries in cancer evolution 
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The large degree of multi-level heterogeneity makes the characterization of all cancers, and 

specifically ovarian cancers, especially difficult. Of the many types of heterogeneities, genome-

level heterogeneity has the greatest impact on cell population dynamics (Heng et al. 2006a, Ye et 

al. 2009, Heng et al. 2013a, Liu et al. 2014, Stevens et al. 2014). The overwhelming degree of 

heterogeneity observed in cancer, and in particular ovarian cancer, cannot be explained by 

Darwinian evolution or models of clonal expansion (Heng et al. 2013a, Ling et al. 2015). 

Therefore, a systematic reevaluation of cancer evolution is necessary to understand how the large 

degree of multi-level heterogeneity is maintained. The Genome Theory incorporates heterogeneity 

as the essential feature to explain what drives organismal and somatic cell evolution (Heng et al. 

2006a, Heng et al. 2006c, Heng et al. 2010, Heng et al. 2011a, Heng et al. 2013a). According to 

the Genome Theory, a cellular system is defined by the genome, and large-scale genome-level 

change leads to the creation of new genome systems, as opposed to the accumulation of individual 

gene mutations. Somatic cell evolution occurs through two distinct phases, which will be described 

in detail in a later section in Chapter 1.   

Another recent development in the theory of the evolution of cancer involves the discovery 

of genome chaos (Liu et al. 2014). Genome chaos is a rapid mechanism of genome re-organization 

where, after a stress event, chromosomes become fragmented and rejoin to form chaotic genomes. 

The process of fragmenting and rejoining continues until more stable karyotypes are established. 

Genome chaos represents a highly significant mechanism of punctuated evolution during crisis, as 

it allows for the rapid formation of new genomes. Subtypes of genome chaos, including 

chromothripsis or chromoplexy, have been identified by a number of sequencing studies (Stephens 

et al. 2011, Baca et al. 2013, Horne et al. 2014). 

System inheritance 
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A crucial component of Genome Theory involves understanding the utmost importance 

and function of the genome. According to the genome theory, the genome is the highest and 

fundamental level of genetic organization, and genome-defined system inheritance represents the 

genetic blueprint of a biological system (Heng et al. 2006a, Heng et al. 2006c, Heng et al. 2011a, 

Heng et al. 2011b, Heng et al. 2013a). Several pieces of evidence support this claim. First, genes 

represent the parts of a biological system (for example, a specific protein). The genome, 

represented by a given karyotype, represents the whole system and provides a 3-dimensional 

structure that defines the genetic interactions and other emergent biological properties of the 

cellular system (Heng 2009). While the gene sequence is responsible for producing the tools used 

in the system, and tools can be modified, they are reliant on a given 3-dimensional context defined 

by the genome that provides the basis for genetic networks. This is called the genome context. 

Furthermore, different layers of genetic information are unique in their methods of handling 

genetic information. DNA is responsible for the inheritance of the parts, while the genome is 

responsible for system inheritance. Second, large-scale genome change results in a newly defined 

system. Translocations and aneuploidy have been shown to drastically alter the genetic networks 

and phenotypic properties of a cell population (Harewood et al. 2010, Stevens et al. 2014). Third, 

sexual reproduction ensures the preservation of a specific genome while asexual reproduction 

actually promotes genomic diversity (Heng 2007b, Gorelick and Heng 2010). Embryos with 

chromosome abnormalities almost always result in termination. Those embryos that do exhibit 

chromosome change are either sterile (for example, a mule), do not survive to a reproductive age. 

Fourth, speciation is associated with genome change (Heng et al. 2013a). While different species 

have many similarities in gene sequences, the genomes are unique. Finally, genome replacement 
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is the force that drives cancer evolution. Different stages of cancer progression are driven by large 

scale genome changes. This will be described in more detail next.  

The two evolutionary phases of cancer evolution 

The Genome Theory was established using an in vitro model of cellular immortalization in 

spontaneously transformed human fibroblasts (Heng et al. 2006c). Li Fraumeni cells were kept in 

continuous culture conditions, where genomic analysis was conducted at different evolutionary 

timepoints. At the onset of the experiment, cells were largely genomically stable, or karyotypically 

clonal. As the cells were kept in continuous culture conditions, internal cellular stress had 

accumulated and led to the genomic destabilization of a few cells, leading to increased cell 

population heterogeneity at the genome level, reflected predominantly as karyotype change that is 

nonclonal. Throughout the duration of the experiment, two forms of chromosomal aberrations 

were identified, clonal and nonclonal, and appeared in two distinct evolutionary phases. The first 

phase, called the macrocellular evolutionary punctuated phase, is characterized by a large degree 

of karyotype-level heterogeneity. Individual cells were karyotypically unique and exhibited 

nonclonal chromosomal aberrations (NCCAs). Spectral karyotyping of subsequent passage 

doublings of serially passaged cells demonstrated that cells evolved through punctuated evolution, 

as the same specific karyotypes were not inherited, and old genomes were replaced with new 

genomes with each cell division. In other words, there was no stepwise accumulation of genetic 

change. A selection event occurred at a crisis point, where cells that are genomically stable and 

exhibit clonal chromosomal aberrations (CCAs) were selected and evolved more slowly. This 

marked the beginning of the second evolutionary phase. In the micro-evolutionary phase, or 

stepwise phase, cell population heterogeneity was low at the genome level, reflected by cells that 

are karyotypically clonal. Evolutionary change was driven by gene-level change, which was 
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gradual and accumulated over time, and could be traced. The two phases continually cycle, thus 

reconciling punctuated macro-cellular evolution with stepwise, gradual micro-cellular evolution. 

The cycling of the two phases is significant because of its implications to cancer evolution and 

drug resistance. Because karyotypes are not inherited during the punctuated phase and genome 

replacement is dominant, it is nearly impossible to predict which specific karyotype will become 

dominant in the stepwise phase. Furthermore, developing chemotherapy for a specific NCCA may 

not be the best approach for cancer treatment because each tumor represents a single trial of 

evolution. The punctuated pattern of cancer has been confirmed by multiple sequencing studies 

(Navin et al. 2011, Baca et al. 2013, Wang et al. 2014). 

 The general mechanism of Genome Theory is comprised of all individual molecular 

mechanisms. The key feature that drives evolutionary change is genome replacement, or genome 

change. Genome change is triggered by accumulated genomic stress. In general, stress that triggers 

genome change can be endogenous or exogenous, that results in a change in the overall genome 

status. Factors that trigger stress include gene mutations, deregulated epigenetic change, 

chemotherapy, changes in temperature, and even continuous cell culture conditions (Heng et al. 

2006, Ye et al. 2009, Stevens et al. 2011). Genome-level alterations are a characteristic feature of 

nearly all ovarian cancers, which includes nonclonal karyotypic change, a crucial component of 

the evolutionary process of ovarian cancer. Many factors have been linked to ovarian cancer, which 

include gene mutations (TP53 is mutated in most high grade serous ovarian cancers), chromosome 

instability, mutator phenotype, epigenetic dysfunction, and oxidative stress. TP53 has been found 

to be mutated in approximately 93% of high grade serous ovarian cancers (TCGA 2011, Kanchi 

et al. 2014). Despite its highly mutated status, a mutation in TP53 is not required for primary tumor 
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growth. Rather, it is more likely that mutated TP53 dynamically works with other stressors to 

promote genomic instability and tumor growth.  

NCCA:CCA cycles and genome instability   

Genome (chromosome) instability is a hallmark feature of cancer cells that can be generally 

defined as a process that involves chromosomal breakage, rearrangement and duplications (Horne 

2015c). Additionally, it can also be defined as the acquisition of mutations related to the stability 

of the genome. Genome instability can occur through a variety of mechanisms: mutations in genes 

that work to maintain the stability of the genome (for example, TP53 or ATM); drug treatment or 

exposure to other stressors which cause chromosome breaks and aneuploidy; changes to cell 

culture conditions, among others (Heng et al. 2006c, Negrini et al. 2010). While many distinct 

molecular pathways can be deregulated to result in genome instability, they all share one common 

feature: elevated NCCA frequency at the genome level (Ye et al. 2009, Stevens et al. 2011). In the 

unstable phase, cells struggle for survival, and so most cells with stochastically generated NCCAs 

will be eliminated and replaced by cells with new NCCAs. Eventually a cell with an NCCA that 

is more stable will present itself with a molecular pathway that has a strong growth advantage and 

will become dominant, thus beginning the stable microcellular Darwinian phase where NCCA 

frequency is drastically reduced and CCAs become more dominant. Due to their high frequency 

in unstable cell populations, regardless of the specific molecular mechanism, NCCAs are thus 

reflective of overall genome instability and can be used to quantitatively measure the instability of 

a cell population. In cancer, multiple rounds of NCCA:CCA cycles occur, each coinciding with 

different stages of cancer evolution. NCCAs are conventionally regarded as genomic background. 

NCCAs have also been linked to transcriptome heterogeneity, growth heterogeneity, drug 

resistance, and cancer evolution. In contrast CCAs are markers of stability (Heng et al. 2006a, 
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Heng et al. 2006b, Heng et al. 2006c). NCCAs therefore reflect the status of the genome system 

and thus can be used as a measure of genome/chromosome instability to monitor cancer evolution. 

Finally, monitoring NCCA frequency is not for the identification of a specific chromosome 

aberration, but rather to trace them along with CCAs to understand general tumor dynamics.  

Genome instability linked to transcriptome dynamics 

 Genome instability has significant effects on population dynamics. Specifically, genome 

instability is reported to impact the transcriptional dynamics of a cell population (Harewood et al. 

2010, Lawrenson 2010, Creekmore et al. 2011, Stevens et al. 2013, Stevens et al. 2014). A time-

course analysis was completed that investigated the relationship between genome heterogeneity 

and transcriptome dynamics (Stevens et al. 2014). Spontaneously transformed Li Fraumeni 

fibroblasts were kept in continuous culture, where spectral karyotyping and gene expression 

analysis was concurrently completed at different passage doublings that exhibited different degrees 

of genomic instability. Transcriptome dynamics were found to be heterogeneous in passages with 

high genomic instability with elevated NCCA frequency. Entire gene expression profiles 

drastically changed from one passage to the next. In contrast, the transcriptome dynamics of cell 

populations that were more stable were also more stable, as gene expression profiles largely 

remained constant and unchanged in successive passage doublings. These data suggest that 

karyotype-level changes result in global transcriptome change. It also illustrates how, throughout 

cancer evolution and most significantly punctuated evolution, the constant replacement of new 

genomes indicates global transcriptome dynamics are always changing. Altogether, this highlights 

the fluidity of the “cancer genome,” as there are no static chromosome changes or transcriptional 

networks that are permanent when the genome is unstable.  
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The relationship between genome heterogeneity and transcriptome heterogeneity was 

further confirmed in two independent studies that used spontaneously transformed mouse ovarian 

epithelial cells (Lawrenson 2010, Creekmore et al. 2011) In a time-course analysis, gene 

expression was analyzed at different passages that exhibited elevated genome-level heterogeneity. 

The global transcription profiles of both studies shared some findings: nearly 600 genes were 

differentially expressed, and gene expression profiles changed at each passage. Researchers were 

not able to identify a group of genes that consistently changed throughout each time-.point. 

Furthermore, only a handful of genes were similarly expressed in more than one stage. This data 

suggested that genome heterogeneity results in elevated transcriptome dynamics. Analysis of GO 

categories found no significant overlap between the two studies. This indicates that, not only does 

genome heterogeneity lead to unstable transcriptome dynamics, but each different experiment 

represents one evolutionary run, where the transcriptome is unique. The fluctuating transcriptome 

dynamics in each stage are dependent on the degree of genome change, as well as selective 

conditions for somatic evolution. Similar to the previous study, if two consecutive time-points 

were stable and did not change their karyotypes, then the overall transcriptomes would not 

drastically change either. The findings in these mouse studies are similar to gene expression 

profiles of cancer patients, as the transcriptomes are patient specific and combining a large number 

of patients would yield little, if any, common genes. 

Inheritance 

Genetic inheritance can be defined as the transmission of genetic characters from parents 

to offspring. The current conceptual framework for genetic inheritance originates from the famous 

experiments conducted by Gregor Mendel in Pisum sativum, the common pea plant. By analyzing 

thousands of crosses between true-breeding hybrid pea plants for various traits, Mendel made 
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several conclusions regarding processes of genetic inheritance, which later came to be known as 

the laws of dominance, segregation, and independent assortment. While his work was initially 

dismissed when published in 1866, geneticists in the early twentieth century rediscovered 

Mendel’s work and conducted many experiments in various model systems that supported his 

findings. These works eventually led to the modern synthesis that reconciled Darwinian evolution 

with Mendelian genetics, and established the current understanding of genetic inheritance and 

evolutionary biology, which provided the conceptual framework for most genetics research still 

used today.  

Mendelian/classical inheritance/particulate inheritance 

According to the conventional framework, genes are the distinct units that define 

inheritance. Genes are comprised of two alleles located at the same locus on each sister 

chromosome, which makeup an organisms genotype for a given trait. An individual receives one 

allele from each parent. Some alleles are dominant while others can be recessive. It is widely 

understood that a dominant phenotype emerges from when one or both copies of that dominant 

allele are present, as a dominant allele can mask the phenotype of the recessive allele. Two copies 

of the recessive allele are necessary for that particular recessive phenotype to emerge. Genes 

located on different chromosomes are said to be in linkage equilibrium, as they are inherited 

independently of each other. Genes in linkage disequilibrium are located on the same chromosome 

and have a given likelihood to be inherited together; the likelihood increases the closer genes are 

located on the chromosome. While only few traits are single-gene traits, most genes are polygenic 

and/or multifactorial, in that multiple genetic loci are associated with a single trait and the emergent 

phenotype is dependent on the environmental interaction with those loci.  



www.manaraa.com

  29 
 

Another important feature of inheritance is the manner by which genes evolve. A number 

of alleles exist for a particular gene at a given frequency in a population. According to the 

conventional framework, a single allele confers only a small advantage or disadvantage. Natural 

selection acts on genes and selects those advantageous alleles, and over time advantageous alleles 

accumulate while disadvantageous alleles are discarded. Other mechanisms by which allele 

frequencies can change are mutation, genetic drift and migration or gene flow. Speciation occurs 

when enough advantageous alleles have been accumulated. 

According to the above, genetic inheritance may seem somewhat straightforward., 

However there are a number of factors that makes the pattern of genetic inheritance highly 

complex. While Mendel’s work determined that some traits are discrete and follow a simple 

dominant/recessive autosomal inheritance pattern, most traits are polygenic, and many genes 

exhibit continuous phenotypes. For example, various traits of the common pea plant exhibited 

discrete phenotypes, e.g., peas were either round or wrinkled. Human height is a trait that exhibits 

a continuous phenotype where the inheritance patterns are more complex. Approximately 80% of 

human height inheritance is attributed to additive genetic factors (Visscher et al. 2006, Visscher 

2008, Wood et al. 2014). Many studies have attempted to identify specific loci associated with 

human height. The approach has been straightforward: genome sequencing and SNP analysis for 

a large sample of individuals to find common loci associated with a particular height. Detecting 

common loci responsible for height has been challenging due to the small effect sizes of identified 

loci, thus requiring a larger and larger samples (Visscher 2008). Furthermore, in many cases a 

particular SNP may not be within a particular gene, but in a gene regulatory region. Thousands of 

variants have been identified from the sampling of over 250,000 individuals, all of which explain 

nearly 60% of human height variation. It is estimated that thousands more will be detected (Wood 



www.manaraa.com

  30 
 

et al. 2014). Adding an additional layer of complexity, phenotypes are heavily dependent on the 

environmental interaction with genes. This becomes especially complicated when exposure to a 

particular environment does not always produce the same phenotype, or when different 

environmental factors interact with different loci to produce the same phenotype. This complex 

and increasingly confusing pattern of inheritance is a common occurrence in cancer cell 

inheritance. 

Genetic variation in sexual and asexual species  

Genetic inheritance for organisms that undergo sexual reproduction is different than 

inheritance in asexually reproducing species. For sexual reproduction, inheritance begins with 

reproduction and the formation of gametes, sperm (male) or egg (female). Gametes are haploid 

cells that result from two meiotic cell divisions in the reproductive organ of a given species. 

Fertilization occurs when one sperm and one egg fuse to form a fertilized embryo. In most cases, 

each gamete comes from different organisms, although some organisms can self-fertilize. Gametes 

must exhibit one copy of each chromosome for the normal embryonic development and 

reproductive success of the zygote. In most cases, embryos with chromosomal abnormalities are 

spontaneously aborted. Therefore, the genome for any sexually reproducing individual is one half 

of each parent, and both parents and reproductively successful offspring must have the same 

genome system (for example 46 chromosomes for human parent and child). At the genome level, 

inheritance must be precise in sexual reproduction. 

Genetic inheritance is simpler in asexual reproduction. Genetic material is duplicated 

during the cell cycle in S phase with high precision, although some mistakes may occur at a very 

low frequency. The 4N cell then undergoes mitosis, and one pair of sister chromosomes segregate 

to opposite ends of the cell. The end result after cytokinesis is two cells with identical genomes, 



www.manaraa.com

  31 
 

more or less. Both cells that are normal (for example, 2N=46) and abnormal, in that they exhibit a 

chromosomal abnormality, (for example, 2N≠46) undergo the same reproductive cell division 

process. A normal cell that is genomically stable will pass down a copy of 46 chromosomes to its 

daughter cell. In other words, a normal cell will make a normal cell. At the same time, an abnormal 

cell will pass that same abnormal genome to its daughter cell. In an abnormal cell with a de-novo 

chromosome change, that specific abnormality is passed to its daughter cell. In this instance, it 

seems that genome inheritance need not be precise for the reproductive success of a cell with an 

altered genome. 

In asexually reproducing species, while the same genome must be passed from parent to 

offspring, there is still considerable genetic variation DNA-sequence level. Genetic variation can 

arise from genetic recombination, de novo mutations, random mating, and genetic drift. The 

mixing of two genomes at the sequence level leads to diversity of traits, ex: hair color, eye color, 

height, etc, all while the same genome is preserved. According to the current framework, the 

degree of genetic variation in asexually reproducing species is reportedly less because genetic 

inheritance is precise. Genetic variation in asexual species originates from de novo mutations and 

other genetic changes that occur during cell division at low frequencies. Genetic variation can also 

occur at the genome level, in the form of chromosome change. As stated earlier, the conventional 

framework dictates that the precise changes are inherited by the next generation of cells.  

Therefore, in a population of cells arising from one single founder clone, all cells should be 

identical with some minor variations. Taken together, it is largely believed that genetic variation 

is minimal in asexual species and significantly higher in organisms that undergo sexual 

reproduction.  

Key challenges to the current paradigm 
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According to the above, inheritance in somatic cells is precise. A cell will pass an identical 

genome to its daughter cell. However, the data generated from our cytogenomic studies, as well as 

the cancer genome sequencing studies reveal an overwhelmingly large degree of multi-level 

heterogeneity that are not consistent with mechanisms of classical inheritance in somatic cells. The 

multi-level heterogeneity observed exceeds the heterogeneity expected by Darwinian evolution 

models (Ling et al. 2015). The data indicates that inheritance processes are not precise for all 

somatic cells. The following support this: First, NCCAs are frequently observed in somatic cells, 

especially in populations that are unstable. Second, punctuated macrocellular evolution is well 

documented in unstable cancer cells as the dominant form of evolution (Heng et al. 2011a, Navin 

et al. 2011, Baca et al. 2013). Unstable cells inherit new karyotypes after cell division, which 

directly conflict with precise, classical Darwinian models (Heng et al. 2006c, Voet et al. 2013). 

Third, genome chaos represents a rapid form of genome restructuring where new and complex 

karyotypes are inherited at every cell division (Heng et al. 2006c, Liu et al. 2014). Finally, even 

normal somatic cell populations exhibit substantial genome heterogeneity in the form of somatic 

mosaicism, again conflicting with the precise inheritance framework (Pack et al. 2005, Iourov et 

al. 2008, O'Huallachain et al. 2012). This leads to the following questions: By what mechanism 

are altered karyotypes passed? Currently there are no mechanisms to explain how altered 

karyotypes are passed from a mother cell to its daughter cell. Given that the passing of altered 

karyotypes creates cell population heterogeneity in the form of NCCAs, could this mechanism also 

explain how heterogeneity is created and maintained? Are there specific cells or genetic loci that 

are tasked with generating heterogeneity, or is this a general population-based mechanism? 

Role of the “insignificant” outlier cell 
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Outlier cells represent an underappreciated feature of somatic cell populations, and 

especially cancer cell populations. Outlier cells are typically ignored from most analyses, as the 

primary focus has been placed on identifying genetic drivers that are highly penetrant in a cancer 

cell population. However, it has been difficult to identify highly penetrant drivers, as a significant 

majority of genetic/genomic changes found in cancer cells are rare. In a sense, cells that exhibit 

rare, nonclonal genomic change are outliers, making nearly every unstable cancer cell an outlier. 

Finally, studies have demonstrated new and important functions for outlier cells. For example, 

Chang et al (Chang et al. 2008) found that outlier cells can reconstitute cell population 

heterogeneity of gene expression and cell differentiation. Taken together, this suggests a 

fundamental role for outlier cells that goes beyond the insignificant bystander, where outlier cells 

may be the crucial feature that maintains cell population heterogeneity. 

Somatic cells inherit heterogeneity 

The next logical question to be asked is whether there is a general mechanism that 

facilitates the passing of altered karyotypes. In unstable cell populations, heterogeneity is 

generated through the constant formation of NCCAs during punctuated macro-cellular evolution. 

Here, a daughter cell inherits an altered genome (system inheritance) from its mother cell. By 

definition, a daughter cell must inherit something from its mother cell. The function of inheritance 

is to preserve the same genome system. If the same system inheritance is not inherited, then what 

is inherited? It must be that heterogeneity, or the evolutionary potential to generate altered genome 

systems, is inherited in the next cellular generation. 

 

This synthesis has led to the following hypothesis:  
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Unstable variant/outlier cells drive cancer evolution and fuzzy inheritance represents a 

novel mechanism of passing heterogeneity within cell populations. 

 

The hypothesis was tested and developed through the following chapters: 

Chapter 1: Establish Single cell model and methodology 

Chapter 2: Demonstrate that outlier cells are dominant  

Chapter 3: Characterize mechanism of fuzzy inheritance 

 

To identify if a new type of inheritance exists is tricky, as most research methods are 

average-based and not sensitive to detect fuzzy inheritance. First, it is necessary to determine if a 

mother cell population can pass heterogeneity to its daughter cell population (Figure 3A). Next, it 

is necessary to determine the impact of karyotype heterogeneity on other heritable features of the 

cell. To do this, karyotype heterogeneity needs to be linked with heterogeneity of other traits, like 

cell growth (Figure 3B). Next, it is necessary to determine that an isolated single cell can 

reconstitute cell population heterogeneity of karyotype and cell growth (Figure 3C). Next, it is 

necessary to determine that genome instability is directly related to the degree of heterogeneity 

that is passed (Figure 3D). Finally, the long term evolutionary benefit of fuzzy inheritance is 

demonstrated. While heterogeneity may decrease the overall fitness of the cell population (for 

example due to cell death, slow growth), the variability of genomes significantly increase the 

likelihood of survival under stressful conditions (Figure 3E). To conclude, …? 

To complete these experiments, a single cell model has been developed from ex-vivo mouse 

ovarian surface epithelial cells originating from C57/BL6 mice that were wild type or conditionally 

activated for Brca1 and/or p53 (Figure 2). Single cell spectral karyotyping and single cell growth 
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experiments were performed to test the pattern of inherited traits between mother cells and 

daughter cells. 
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Figure 2: Mouse ovarian surface epithelial cell-derived single cell model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single cells were isolated from resected ovaries originating from wild type and ovarian specific 

conditionally inactivated Brca1 and Brca1/p53 mice. Single cells were developed and kept in 

continuous culture. 
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Figure 3: Diagrams demonstrating the mechanism of fuzzy inheritance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mechanism of fuzzy inheritance is illustrated in the above diagram. Each circle with a 

different color represents a cell with a unique genome. A) A low degree of genome-level 

heterogeneity is present in stable cell populations, while in unstable cells, genome heterogeneity 

is high. Stable cells pass stability, while unstable cells pass instability to future cell populations. 

B) Genome heterogeneity is linked to the heterogeneity of other traits, like cell growth. Stable 

cell populations exhibit more uniform and homogeneous growth while unstable cells exhibit 

heterogeneous and bimodal growth. C) A single stable cell will pass the same system inheritance 

(genome) to its daughter cells, while an unstable cell will pass altered system inheritance. 
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Figure 3, continued  

 

 

 

 

 

 

 

 

 

 

 

 

D) A given degree of heterogeneity exists in each cell population, and that same degree of 

heterogeneity will be passed to future cell generations. For example, a stable cell population 

where 10% of the cells exhibit elevated frequency will pass the same degree of heterogeneity 

(10%) to its daughter cell populations. In unstable cells where heterogeneity is 100%, daughter 

cell populations will also exhibit 100% heterogeneity. E) Fuzzy inheritance increases the 

likelihood of cell population survival while under stress by providing the cell population 

diversity and evolvability necessary for survival. 
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CHAPTER 2: A SINLGE CELL GENOME-BASED MODEL OF OVARIAN CANCER 

EVOLUTION 

In order to fully assess the mechanism of inheriting altered karyotypes, it is necessary to 

establish an experimental model that meets the following criteria: 1) the ability to monitor 

evolution in action under control and stress conditions; 2) the ability to detect system changes, or 

genome-level change; 3) the ability to utilize single cell experimental methods; 4) the ability to 

characterize multiple cell lines with different degrees of genome instability; and 5) the ability to 

measure the effects of genome heterogeneity on other heritable features of the system. 

A number of in vivo and in vitro models have been previously developed for the study of 

ovarian cancer evolution, including transgenic mouse models and syngeneic mouse models 

(Vanderhyden et al. 2003, Fong and Kakar 2009), but not the maintenance of cellular 

heterogeneity. Both transgenic and syngeneic mouse models represent widely used research tools 

intended to mimic neoplastic transformation in humans that allow for the characterization of cancer 

evolution, and especially early genetic changes. A particular emphasis has been placed on early 

genetic events in ovarian cancer research, as most patients are diagnosed at late stages. The use of 

either type of model, as is, would not be suitable for the execution of this project. However, these 

models can be adapted to meet the criteria of the project. The following section describes the 

adaptation of both models for the execution of this project. 

In vitro cellular model of fuzzy inheritance 

An in vitro cellular model of cancer cell evolution is the most suitable model for 

characterizing the mechanism of fuzzy inheritance, as it meets all of the aforementioned criteria. 

An in vitro model is best for monitoring evolution in action, as cells can be isolated at any passage 

to monitor single cell dynamics, including genome-level changes and growth, at the single cell 

level. Furthermore, multiple cell lines can easily be incorporated through an in vitro model. 
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Previous studies investigated the process of spontaneous transformation and 

immortalization in wild type mouse ovarian surface epithelial cells (Lawrenson 2010). Wild type 

MOSE cells were kept under continuous cell culture conditions for a given period of time. Cells 

at earlier passages were genomically stable, while cells at middle or late passages exhibited 

increased genome heterogeneity. Because cell lines with different degrees of genome instability 

were desired for this project, early passage cells and late passage cells were obtained. 

Unfortunately, early passage cells from multiple early passages that were more genomically stable 

were not robust for cellular passaging or for single cell isolation, as cells reached doubling capacity 

and became senescent. Obtaining genomically unstable cells was much less difficult. Cells at later 

passages, after one year of continuous cell culture, and cells with that had been conditionally 

inactivated for Brca1 and Brca1/p53 at approximately 5 cellular passages, exhibited a large degree 

of karyotype heterogeneity and were robust in cell culture and single cell isolation, fulfilling the 

requirement for genomically unstable cells. 

Because there was difficulty in obtaining genomically stable cells that are robust for 

cellular passaging and single cell isolation from wild type mice, MOSE cells isolated from the 

ovaries of conditionally inactivated Brca1 and Brca1/p53 were used. However even at early 

passage cells (passage 8), both of these cell types had exhibited a large degree of genome 

heterogeneity (data shown in Chapter 3). It became apparent that stable cell lines originating from 

MOSE cells that were robust for continuous cell culture and single cell isolation could not be 

obtained. Therefore, another cell line known for its karyotype stability and robustness in cell 

culture was needed. HCT116 cells fulfilled this requirement, as they exhibit long-term karyotype 

stability in cell culture and can grow well in cellular passaging under control and stress conditions 

(Knutsen et al. 2010). 
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Single cell isolation 

Serial dilutions were performed on three different types of ex-vivo cells originating from 

the ovarian surface epithelium of C57-BL6 mice: spontaneously transformed wild type cells that 

have been in continuous culture for one year and spontaneously transformed, conditionally 

inactivated Brca1/p53 cells that have been in continuous culture for 70 days.  

Serial dilutions were completed in 96-well plates. Two plates were used for the wild type 

cells, and four plates were used for Brca1/p53 -/- cells. As shown in Figure 4, 1,000 cells were 

pipetted into well A1. Cells were first diluted by a factor of 2 down column 1, and then across the 

plate using a multichannel pippettor. After dilutions, wells with single cells were identified the 

next day and verified by an independent investigator. After dilutions, wells with single cells were 

identified the next day and verified by an independent investigator. According to calculations, 

single cells were expected in the wells marked with a star. The following single cells were 

successfully isolated and cultivated into subpopulations: 

Wild type: WT_Sub1; WT_Sub2 

Brca1 -/-: Br_Sub1; Br_Sub2; Br_Sub3 

Brca1/p53 -/-: Sub1; Sub2; Sub3; Sub4  

Each single-cell derived subpopulation was kept in continuous culture conditions. When cells 

reached confluency, all cells were trypsinized and transferred into 6-well plates, and then to T-25 

and T-75 cell culture plates. 

 

 

Figure 4: Serial dilutions for single cell isolation 
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Serial dilutions performed in ovarian surface epithelial cells resected from C57/BL6 mice that 

were wild type, and ovarian specific conditionally inactivated for Brca1 and Brca1/p53. 1,000 cells 

were pipetted into well A1. Cells were diluted by a factor of 2 down column 1 and then across 

each row. Single cells were expected in wells marked with a star. 

 

 

Measuring population-level growth 

The average doubling time and the number of doublings in the first passage are found in 

Table 1. All single-cell derived subpopulations underwent approximately 18-20 doublings in the 

first passage. Population doubling rates were measured for 30-60 passages for each single cell 

derived subpopulation. 100,000-500,000 cells were plated for each passage. Cells were   
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trypsinized and passaged at 80% confluency. Replicates of Sub1 and WT_Sub1 were also kept in 

parallel, continuous culture beginning at passages 8 and 7, respectively. 

Measuring single-cell growth 

 Single cell growth was monitored for Sub1, Sub2 and WT_Sub1 cell populations. In order 

to determine the degree of single cell growth heterogeneity in unstable cell populations, cells were 

plated in a single T-25 culture flask, single cells were identified on Day 1 and their growth into 

colonies were monitored over the course of one week (Figure 5). Initial single cell growth 

experiments determined that WT_Sub1 cells were not ideal cells for measuring single cell growth. 

Cells were mobile as they would easily detach from the bottom of the flask and travel to a different 

location on the bottom of the flask, making single cell growth profiling difficult to monitor (data 

not shown). Sub1 and Sub2 cells, however, remained stationary throughout the duration of the 

experiment, allowing for identification of single cells and faithful monitoring of their growth. 

 Sub1 cells were used to optimize experimental parameters. Initial cell populations of 5,000 

cells, 2,500 cells, 1,000 cells, 400 cells and 250 cells were plated in gridded T-25 culture flasks. 

Flasks seeded with 5,000 cells, 2,500 cells, and 1,000 cells were too concentrated for the 

monitoring of single cell growth heterogeneity. Single cells could be identified in flasks seeded 

with 400 and 250 cells. However flasks seeded with 250 cells were too sparsely plated, making 

single cell identification difficult. Single cells identified for the growth heterogeneity assay must 

be spaced at least 200µm apart so as to prevent colonies growing into each other. 

Single cell growth heterogeneity was monitored over the course of one week. Images were taken 

of colony sizes almost daily. The endpoint chosen was 6 days. Six experiments were randomly   
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Table 1: Doubling time information for single cell-derived subpopulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doubling information is provided for each isolated single cell-derived subpopulation. The first 

column calculates the number of doublings from single cell isolation until the first passage. The 

second column calculates the average doubling time in hours for each single cell derived 

subpopulation. The following number of doubling times were averaged for each subpopulation: 

wild type subpopulations, n=53 passages; Brca1 knockout, n=24 passages; Brca1/p53 

subpopulations, n=38 passages. 

 

 

 

chosen and the coefficient of variation (CV) values for daily growth were calculated on days 4, 5, 

and 6. There was no significant difference in the CV values between the chosen endpoints (Figure 

6). By 5 or 6 days, at least one colony would have entered the exponential phase, with colony sizes 

exceeding 500 cells. Colony sizes of more than 500 cells had an approximate surface area of 

200µm or more. Because single cells initially identified on Day 1 were at least  

WT_Sub1 20 26 10

WT_Sub2 19 28 12

-- 22 10

Br_Sub1 Not determined 39 50

Br_Sub2 22 33 56

Br_Sub3 18 27 16

Sub1 20 42 35

Sub2 20 33 15

Sub3 18 28 16

Sub4 18 35 19

Sub1 replicate -- 23 10

Number of doublings 

until first passage

Average doubling 

time (hours)

Standard 

Deviation

WT_Sub1 

replicate
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Figure 5: Monitoring of in-situ single cell growth 

 

 

 

 

 

 

Single cells were identified on Day 1 and their growth was monitored daily for up to 7 days. 

 

 

 

 

 

200µm apart, 6 days was chosen as an endpoint to prevent colonies from growing into each other.  

Measuring growth heterogeneity 

Images of single cell derived colonies were taken almost daily and were quantified 

manually using ImageJ software. The number of cells per colony on day 6 was used to measure 

growth heterogeneity for most experiments. Growth heterogeneity was measured by calculating 

the CV, which is obtained by dividing the standard deviation by the mean. Several studies have 

used the CV to quantify different types of heterogeneity, including growth heterogeneity (Keren 

et al. 2015). 

 

Power calculation 
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 An alternate method of power calculation was completed in order to obtain a sample size 

that will give an accurate assessment of the growth heterogeneity of a cell population. Most power 

calculations and other forms of hypothesis testing use the statistical average as the point estimate. 

The single cell experiments completed measures not only growth, but variation. While variation is 

a component of power calculations, it is not the end measurement. Therefore, an alternate method 

of determining an appropriate sample size was developed in order to account for variation. 

Increased sample size was plotted by the standard deviation of single cell growth (Figure 7a). As 

the sample size increased by an increment of 5 cells, the variation in the standard deviation 

decreased and eventually leveled off at approximately 25-30 cells. Therefore, a sample size of 25-

30 cells were used. Multiple single cell in situ growth experiments were completed at the 

appropriate sample size. Each experiment demonstrated a wide degree of growth heterogeneity, as 

single cells exhibited bi-modal or even multi-modal growth (Figure 7b).  

Elimination of confounding factors 

Some factors may influence the rate of growth of cells growing on a monolayer dish. One 

such factor is contact inhibition, which occurs after cells growing on a monolayer dish come into 

physical contact, and cease growing. In order to determine that contact inhibition was not a factor 

in the growth heterogeneity of colonies, in situ single cell growth experiments were performed on 

unstable Sub1 cells and day 6 colony sizes were quantified. Colonies were then grouped based on 

their type of growth: clustered growth and non-clustered growth to determine if contact inhibition 

was a factor in growth heterogeneity (Figure 8a). It was found that contact inhibition was not a 

factor in overall cell growth, as there was no significant difference in the growth between colonies 

where cells were tightly clustered, and those colonies where cells were more dispersed (Figure 

8b). 
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The spatial proximity between two separate colonies may also be another factor in the 

growth heterogeneity of single cell derived colonies, where two cells in closer proximity may have 

similar growth rates compared to cells that are more distant. In order to determine 

Figure 6: Growth heterogeneity is similar across different endpoints 

 

 

 

 

 

Single cell growth measured at different endpoints exhibited similar heterogeneous growth 

distributions. Single cell growth was measured at days 4, 5 and 6 (n=6 experiments). The 

coefficient of variation was calculated and compared. There was no significant difference in the 

CV among the various endpoints (students t-test, p-value ≥0.1). 

 

 

whether spatial proximity played a factor in growth heterogeneity of cells, 50 cell pairs that grew 

between 200 µm-  250 µm were compared to cell pairs with greater than 250 µm difference. Results 
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demonstrate that there was no significant difference in colony size between colonies in close 

proximity compared to colonies that were more distant (Figure 8c). 
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Figure 7a: Alternate method for determining sample size for in situ single cell growth 

experiments 

 

 

 

 

 

Sample size determination for in situ single cell growth experiments. Most power analyses and 

hypothesis testing use the mean as a point estimate, however single cell growth experiments 

measure variation in growth. Therefore, an alternate method of determining a sample size is 

proposed that plots increasing sample size against the standard deviation of single cell growth. As 

the sample size increases, the variation in the standard deviation decreases and levels off at 30 

cells. 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

5 cells 10 cells 15 cells 20 cells 25 cells 30 cells

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n



www.manaraa.com

  50 
 

Figure 7b: Replicate experiments demonstrating growth heterogeneity of unstable cells 

 

 

 

Experimental replicates of unstable Sub1 cells. Each experiment demonstrated a large degree of 

growth heterogeneity, as cells manifested into bi-modal or multi-modal growth distributions. 
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Figure 8: Growth heterogeneity unaffected by contact inhibition or spatial proximity to other 

colonies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contact inhibition and spatial proximity to other colonies was examined to determine its influence 

on growth heterogeneity. (A) In 5 randomly chosen experiments, colony growth was categorized 

as “clustered” if cells grew in a tightly clustered colony, or “non-clustered” if the individual cells 

of a colony were spread out. (B) Average colony size was compared between clustered and 

nonclustered in five independent experiments, and there was no significant difference between the 

two groups. (C) Spatial proximity between individual colonies was also tested to determine if those 

colonies growing closer together exhibited similar growth patterns compared to those colonies that 

were more distant. Results show that spatial proximity to other colonies was not a factor in colony 

growth. 

 

  



www.manaraa.com

  52 
 

CHAPTER 3: SINGLE CELL HETEROGENEITY IN STABLE AND UNSTABLE CELL 

POPULATIONS 

Introduction 

 Single cell heterogeneity represents a paradoxical dilemma for current and future biological 

research (Huang et al. 2009, Heng et al. 2011a, Heng et al. 2011b). Many of the fundamental 

principles upon which biology is based has been completed by experimental methods and analyses 

based around the statistical average. While data that has been generated by average-based methods 

and analyses has contributed much to our current understanding of biology, increased single-cell 

studies have begun to demonstrate that the “average cell” does not match up to the single cell 

profiles of a cell population (Wang and Bodovitz 2010, Pelkmans 2012). For example, different 

cells of the same cell population may use different molecular mechanisms to carry out the same 

cellular process (Heng et al. 2011a, Stevens et al. 2011). Cellular heterogeneity is a fundamental 

component for robust biological systems and evolution, and is central to understanding the 

evolution of somatic cell diseases (Heng 2008, Heng 2013a). 

 Single cell heterogeneity has been previously studied to understand microbial resistance 

and evolution. It has been shown in many studies that diverse phenotypic states exist within a cell 

population, where single cells are grouped into multi-modal distributions. These studies illustrate 

many interesting findings: 1) distinct cell states are due to the stochastic fluctuations of single cells 

(Elowitz et al. 2002, Balaban et al. 2004); 2) cell populations are diversified by individual cell 

states that are important for cellular evolution (Kussell and Leibler 2005, Acar et al. 2008, Cohen 

et al. 2008); and 3) causal relationships cannot usually be determined in the natural settings where 

stochasticity, or noise, is a dominant feature, while these relationships are well detected under 

defined experimental settings (Heng et al. 2006c, Heng et al. 2011a). 
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 Among genomically stable cells, variation among single cells may be attributed to novel 

regulatory mechanisms (Pelkmans 2012). That cell populations are mainly isogenic is well 

accepted in biology, and that genetic and nongenetic variation among individual cells contribute 

to varying population dynamics is a view shared by many (Huang et al. 2009, Gupta et al. 2011). 

However, many studies have challenged the well-accepted concept of karyotype homogeneity. 

First, most cancer cell populations exhibit a large degree of heterogeneity, especially karyotype 

heterogeneity (Heng et al. 2006b, Heng 2009, Heng et al. 2013a). Second, a re-examining asexual 

reproduction finds that, contrary to conventionally held beliefs, cells that undergo asexual 

reproduction actually do not genetically produce identical daughter cells (Heng 2007b, Gorelick 

and Heng 2010, Horne et al. 2013). Many studies have demonstrated that genome heterogeneity 

exists even in normal tissue, a phenomenon termed somatic chimerism, and is linked with various 

physiological conditions and somatic cell disease conditions (Heng et al. 2004, Iourov et al. 2008, 

Heng et al. 2010, Sgaramella 2010, Duncan et al. 2012, Heng 2013c, Heng et al. 2013b, Hulten et 

al. 2013). Somatic chimerism challenges the idea that cells in normal tissue only contain normal 

karyotypes. Third, according to the genome theory, the evolutionary unit of selection is the genome 

system (Heng 2009, Heng et al. 2010, Heng et al. 2011a, Stevens et al. 2011). In the unstable 

cancer macro-cellular phase, genome replacement drives cancer evolution (Heng 2009, Heng et 

al. 2011a, Stevens et al. 2011, Heng 2013a). 

 Altogether, the most significant form of genetic heterogeneity in cancer cells occurs at the 

genome level. Our first step in biological research is to validate karyotypic integrity at single cell 

resolution in a cell population. Experimental model systems are often clonal or linear, which are 

fundamentally different than natural settings where genome-level heterogeneity is more common. 

The characterization of genome level heterogeneity in these two settings may explain how the two 
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settings are fundamentally different. The relationship between different types of heterogeneity in 

cancer can be explained by various proposed multiple level landscape models (Stevens et al. 2011, 

Heng et al. 2013a, Huang 2013).  

 In this chapter, the degree of genome heterogeneity and its effects on population dynamics 

were investigated using primary ovarian surface epithelial cells that originated from wild type and 

conditionally inactivated Brca1/p53 C57/BL6 mice, in order to examine the importance of single 

cell analysis in biological research, its effects on population dynamics (specifically growth 

heterogeneity), and its implications on average-based technical and analytical research methods 

commonly used in biological and specifically cancer research. Using single cell culture and single-

cell spectral karyotyping, a panel of single cells originating from the ovarian surface epithelium in 

spontaneously transformed wild type and conditionally inactivated Brca1/p53 mice were isolated, 

and the degree of single cell genome heterogeneity and single cell growth profiles were 

determined. It was found that unstable cancer cells exhibit a large degree of genome heterogeneity 

at the single cell level. Additionally, cell populations that exhibit increased genome heterogeneity 

also exhibit elevated growth heterogeneity. Comparison of single cell analyses to population-level 

analyses found that the statistical average was inconsistent with single cell karyotype and growth 

profiles of unstable cell populations. This indicates that the average is a poor measure for cell 

populations that exhibit a high level of genome heterogeneity. Finally, it is demonstrated that 

genome heterogeneity is mediated by instability, and is a key feature of cancer cell populations 

that exhibit a high level of chromosome instability (CIN), and outliers drive population growth.  

 

 

Materials and Methods 
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Cell lines: Spontaneously transformed ovarian surface epithelial cells were isolated as previously 

described (Roby et al. 2000). Briefly, wild type C57/BL6 mice were sacrificed at age 6 weeks, 

upon which the ovaries were resected and scraped onto 6 well plates. Cells were maintained under 

continuous culture conditions. Conditionally inactivated Brca1/p53 knockout ovarian surface 

epithelial primary cells were obtained from the University of Ottawa (Clark-Knowles et al. 2009). 

Single cells were isolated from various ex-vivo cells as described earlier. Briefly, a panel of single 

cells were isolated from both cell lines through serial dilutions in 96 well plates after 1 year (wild 

type spontaneously transformed) or 60 days (Brca1/p53 conditional knockouts) in continuous 

culture. Immediately after single cell dilutions, single cells were identified using a Nikon TMS 

inverted microscope and confirmed by a second investigator. HCT116 cells were a gift from the 

lab of Dr. Bert Vogelstein (Lengauer et al. 1997). 

Cell culture: Standard cell culture techniques were used for all cell lines. Spontaneously 

transformed wild type cells and conditionally inactivated Brca1/p53 knockouts were kept in high 

glucose DMEM, supplemented with 4%FBS, antibiotic, and insulin, transferrin and sodium 

selenite (ISST) growth supplement. HCT116 cells were maintained in RPMI medium, 

supplemented with 10% FBS and antibiotics.  

Cytogenetic metaphase slide preparation and spectral karyotyping (SKY): Cytogenetic slides and 

spectral karyotyping were prepared and completed, respectively, as previously described (Heng et 

al. 1992, Heng et al. 2006a, Heng et al. 200c6, Ye et al. 2009). Briefly, cells were plated into T-75 

culture dishes. After 3 days of growth or when cells reached approximately 50%-60% confluency, 

cells were treated with 100µM colcemid for 2 hours. Next, mitotic cells were obtained through a 

mitotic shake-off, washed in PBS and re-suspended in a hypotonic solution of 0.4% KCl for 30 

minutes at room temperature. After hypotonic treatment, cells were prefixed using a 3:1 methanol: 
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acetic acid fixative by applying approximately 120µL of fixative to centrifuge tubes. Cells were 

then resuspended and fixative was applied three times at varying times and temperatures: first and 

second fixatives applied for 30 minutes at room temperature; and third fixative applied overnight 

at 4°C. Cells were then dropped onto slides. Metaphase slides were then denatured and hybridized 

with mouse probes. Images of mitotic structures were captured using a charge coupled device 

camera. 

SKY was completed on metaphase slides according as previously described (Ye et al. 2009). 

Metaphase slides were first washed in Earl’s medium. Slides were then treated in trypsin solution 

(5g/L trypsin and 2g/L EDTA in Earl’s medium) for 20 seconds at room temperature. Following 

trypsin treatment, slides were washed in water and dehydrated in ethanol series (70%, 80%, 100%) 

for 2 minutes each. Slides were left to air dry.  

After trypsin treatment, slides were ready for chromosome denaturation. Slides were placed in 2X 

SSC (saline sodium citrate) solution for 2 minutes at room temperature, and then dehydrated in 

ethanol series 70%, 80%, 100% for 2 minutes each. Slides were left to air dry. Slides were then 

placed in a coplin jar containing 40mL of heated (72ºC) denaturation solution (70% formamide/2X 

SSC, pH 7.0) for 60-90 seconds, and then immediately placed in cold ethanol series (70%, 80%, 

100%) for 2 minutes each. Slides were left to air dry.  

Following chromosome denaturation, SKY (spectral karyotyping) probe was denatured by 

incubation at 80ºC in a water bath for 7 minutes. Probe was then placed in a 37ºC water bath for 

10 minutes. Denatured probes were then applied to metaphase slide. Plastic cover slips were placed 

over slides and the edges were sealed with rubber cement and placed in a 37ºC humidified 

incubator overnight. Slides were then washed in 0.4% SSC at 72ºC for 5 minutes. Following this 

wash, slides were placed in another washing solution (4X SSC/0.1% Tween 20) for 1 minute. 
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Slides were then allowed to drain, Cy5 applied to slides, cover slip placed on slides and plac 

incubated at 37ºC for 40 minutes. Following incubation, slides were washed three times in washing 

solution at 45ºC for 2 minutes per wash. Cy5.5 staining reagent was then applied directly onto 

slides, cover slip was placed on top of slide and slides were placed in 37ºC incubator for 40 

minutes. Following incubation, slides were washed three times in washing solution at 45ºC for 2 

minutes per wash. Slides were tilted and drain. Finally, anti-fade/DAPI was applied to slides, glass 

cover slide was placed, and slides were ready imaging. 

Karyotypic analysis: Karyotypic analysis was completed as previously described (Heng et al. 

2006b, Heng et al. 2006c). Briefly, SKY analysis was completed for 30 cells for each sample where 

the number of NCCAs and CCAs were enumerated. NCCAs are either structural (such as 

translocations) or numerical (such as aneuploidy). A chromosome aberration is designated an 

NCCA if it is present in 4% or less of the sampled cells. All chromosome structures were visualized 

on heatmaps. In each heatmap, row corresponds to one single cell.  

Population-level counting: Each cell line and single cell derived subpopulation were grown in T-

75 flasks. Cells were passaged and enumerated when they reached approximately 80% confluency. 

For subsequent passages, cells were re-plated in fresh T-75 culture flasks. 

In-situ single cell counting: 400 cells were plated in gridded and labeled T-25 cell culture flasks 

Single cells were identified on day 1 and cell growth was imaged and counted daily. 

Statistical analysis: Both normal and derivative chromosome structures were enumerated to 

determine the degree of karyotypic heterogeneity. The sample size for SKY analysis was 

determined through two methods to maintain statistical robustness as well as to account for 

variation of chromosome structures. A power analysis was first completed where α = 0.95, β = 

0.9) yielded a sample size of 15 cells. A second method was also used to find the sample size that 



www.manaraa.com

  58 
 

took chromosome variation into account. The variation of each chromosome, as measured by the 

standard deviation, plotted against increased sample size (Figure 8f). As the sample size increased, 

chromosome variation began to decrease and eventually tapered off at 15 cells. By using these two 

methods, at least 15 cells were analyzed in each sample. 

Carboxyflourescin succimydyl ester (CFSE) tri-color stain generation sort Tri-Color Stain: 

Generation sort was performed using Carboxyflourescin succinmydal ester (CFSE), purchased 

from Invitrogen and assay performed to manufacturer protocol. First, cells were first synchronized 

using a double thymidine block. 2 mM thymidine was applied to cells growing in a T-75 culture 

flask when they reached approximately 40% confluency for 12 hours. This first block keeps cells 

in S phase. After 12 hours, cells were washed twice with PBS and replated at a 1:3 dilution. Cells 

were left to grow overnight. After the release, the second thymidine block (2mM) was added for 

12 hours. Following the second block, cells were washed twice with PBS and resuspended with 

CFSE dye at a concentration of 6µL/100,000 cells. Cells were incubated for 10 minutes in the dark 

at 37ºC. At 1 minute intervals, centrifuge tubes were inverted to ensure CFSE uptake into cells. 

Following the incubation, cells were quenched with 5X volume of ice cold media and placed on 

ice for 5 minutes. Cells were then washed and resuspended in fresh media three times. Cells were 

plated and left to grow for 3 days. On the day of analysis, cells were trypsinized, and incubated 

with Hoechst 33342 live cell nucleic acid dye for 45 minutes at 37°C. Cells were washed twice, 

and then propidium iodide was added immediately before analysis. Cells were sorted and analyzed 

using BD FACSDIVA and BD LSR II and analyzed with Cellquest software. 

 

Results  

Unstable cells cannot be cloned 
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 Multi-level heterogeneity is present in most cancer types (Heppner 1984). Specifically, 

karyotype heterogeneity is a characteristic feature of cancer cell populations (Heng 2009, Heng 

2013a). However, despite its ubiquitous presence, its significance has often been overlooked as 

more effort has been placed on identifying a pattern of clonal evolution. It has been demonstrated 

that sequential and accumulated mutations in a population of cancer cells can result in tumor 

growth in a number of cancer models (Nowell 1976, Fearon and Vogelstein 1990, Maley et al. 

2006). However recent basic and clinical research studies conducted at population-level and single 

cell resolution demonstrated that punctuated evolution is much more common in most cancers than 

clonal evolution. This makes the identification of common biomarkers difficult because each cell 

exhibits its own unique genomic profile (Heng et al. 2006c, Navin et al. 2011). Most of the 

heterogeneity found in cancer cell populations is noncloncal, making it difficult to detect using 

conventional methods based around the average cell profile. Therefore, in order to determine the 

degree of heterogeneity in various cancer cell populations, and to understand how the degree of 

genome-level heterogeneity affects population dynamics (specifically cellular growth and 

evolution), a panel of single cells were isolated using serial dilutions to generate pure, single-cell 

derived cell populations from wild type mouse ovarian surface epithelial (MOSE) primary cells 

that spontaneously transformed in cell culture. Cells were kept in continuous cell culture 

conditions for one year prior to single cell isolation. Spectral karyotyping (SKY) was used to 

determine the degree of genome-level heterogeneity. The parent population exhibited a large 

degree of genome-level heterogeneity, as no two cells were karyotypically identical, as compared 

to early passage wild type primary cells that exhibited very little  
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Figure 9: Unstable cells are not clonable 

 

 

Genome-level heterogeneity depicted by heatmaps. A) Karyotype heatmap of early passage wild 

type mouse ovarian surface epithelial cells after two days in cell culture. As expected, most cells 

exhibit a normal karyotype. B) Karyotype heatmap of parent cell population of spontaneously 

transformed wild type ovarian surface epithelial cells after one year in continuous cell culture. C-

D) Single cell-derived subpopulations originating from spontaneously transformed wild type 

parent cell population kept in continuous cell culture conditions for 23 days (C, WT_Sub1) and 40 

days (D, WT_Sub2). A high level of genome heterogeneity was observed in both subpopulations. 

Also, no direct intermediates could be traced to the parent cell population. E) Karyotype heatmap 

of single cell-derived WT_Sub1 was kept in continuous culture 117 days after single cell isolation. 

Increased genome heterogeneity was observed. F) Sample size determination for SKY analysis.   
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Figure 10: Spectral karyotyping of unstable cell populations

 

Representative spectral karyotypes from each cell population. A) Wild type early passage MOSE 

cells. B) Spontaneously transformed WT MOSE cells after one year in culture. Single cell-derived 

subpopulation (C) WT_Sub1 and WT_Sub2 (D) after 23 and 40 days, respectively days in 

continuous cell culture conditions. E) WT_Sub1, 117 days after single cell isolation. Structural 

NCCAs are circled in red, structural CCAs are circled in yellow. 
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Karyotypic heterogeneity was high in both subpopulations. NCCAs (structural and numerical) 

greatly outnumbered CCAs (Figure 9c, 9d, Figure 10). No two cells were identical, and no 

common karyotypic intermediates were found in either subpopulation, suggesting that punctuated 

evolution was dominant. Subsequent analysis at a later time point demonstrated that heterogeneity 

remained high and increased with time, as indicated by the NCCA index (Figure 9e). 

 According to models of clonal evolution, it is expected that some clonal karyotypic 

aberrations should have been detected in subpopulations that were generated from a single cell. In 

order to maintain the purity of a cell line, it is common practice in cell culture to subclone a cell 

line after extended periods of cell culture. The data presented suggests that in cell lines where the 

genome is unstable, karyotypic cloning is not possible even within a short time period. SKY 

analysis of two single-cell derived subpopulations demonstrated that no two cells had identical 

karyotypes, even in a short time period, suggesting that the karyotypic cloning of an unstable cell 

population is not possible. A common critique has been that the results of this data are artifacts of 

cell culture. To demonstrate that the results presented are not artifacts, the same cell culture and 

techniques were used on HCT116 (data shown in Chapter 4) and HeLa cell lines with stable 

genomes. Both cell lines exhibited minimal karyotypic change over time (Shih et al. 2001, Knutsen 

et al. 2010). Therefore, in unstable cell lines that cannot be karyotypically cloned, heterogeneity is 

dominant. The data presented is consistent with previous studies that associate a high degree of 

genome instability with punctuated cancer evolution where stochastic genome alterations are 

dominant (Heng et al. 2006a, Heng et al. 2006b, Heng et al. 2006c). 

Karyotype heterogeneity leads to growth heterogeneity 

karyotypic heterogeneity (Figure 9a, 9b, Figure 10). SKY of two single-cell derived pure 

subpopulations was completed after 3 weeks in continuous culture. 
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 Karyotype heterogeneity can have significant impacts on the dynamics of a cell population. 

Karyotype heterogeneity has been linked as a causal factor in transcriptional heterogeneity, growth 

heterogeneity, and survival heterogeneity in a number of experimental systems (Harewood et al. 

2010, Pavelka et al. 2010, Levy et al. 2012, Heng et al. 2013a, Stevens et al. 2013). In order to 

determine the effects of karyotype heterogeneity on cancer cell growth, single cell and population-

level growth was compared using karyotypically stable (HCT116 cells) and karyoytpically 

unstable cell lines (single-cell derived subpopulations of conditionally inactivated Brca1/p53 

MOSE primary cells). Single cell growth profiles were compared to the population-level growth 

profiles to determine how single cells contributed to population level growth. Population doubling 

(PD) was monitored. PD is a commonly used technique to measure population growth (Mehrara 

et al. 2007). Monitoring PD of karyotypically unstable single-cell derived subpopulations 

demonstrated that each subpopulation had a different doubling rate and overall growth (Figure 

11a). Next, the growth of two biological replicates were compared. The PD times of replicates 

found that there was considerable difference between the doubling times, suggesting independent 

evolution of each replicate (Figure 11b). Regression analysis of the doubling times was completed 

between the two replicates and no correlation was found (Figure 11c; r2=0.0068). While some PD 

values could be considered as outliers or growth anomalies and might be excluded in order to give 

a weakly positive correlation, the exclusion of any PD time, regardless of how fast or how slow, 

would not provide an accurate assessment of population-level growth, as it may be that each 

replicate is independently evolving, therefore exhibiting its  

 

 

Figure 11: Genome-mediated growth heterogeneity 



www.manaraa.com

  64 
 

 



www.manaraa.com

  65 
 

Caption: Growth heterogeneity in unstable cell populations. A) PD rates of single cell populations 

were monitored, where each subpopulation exhibited unique and fluctuating growth rates. Growth 

rate variation was moderate, and measured by CV (WT_Sub1, 40%, WT_Sub2, 42%). B) PD rates 

of two replicates of WT_Sub1 were compared. Both replicates exhibited unique and fluctuating 

growth rates. (Replicate 1 CV = 44%; replicate 2 CV = 45%, n=2). C) Regression analysis was 

completed between two replicates displayed no correlation (r2=0.0068). D) Representative 

example of in-situ single cell growth. Single cells were identified on day 1 and their daily growth 

was monitored. E) Single cell growth in HCT116 cells and unstable Sub1 cells. Unstable Sub1 

cells exhibit significantly higher growth variation (CV=200%) than stable HCT116 cells 

(CV=44%) (F-test, p≤1.4x10-6. Kernel density estimates are shown in panels F (stable cells) and 

G (unstable cells). Stable cell populations are unimodal and exhibit narrow distributions while 

unstable cells are bimodal or multimodal, exhibiting diverse and broad growth distributions. 

 

 

own PD rates. Furthermore, the exclusion of any particular PD time-point would remove any 

contribution that outlier cells could potentially make to the growth of the cell population. Finally, 

in addition to the overall growth of each subpopulation being different, the PD growth rates 

fluctuated with every passage. The fluctuating PD rates may be due to the high karyotypic 

heterogeneity in each subpopulation, suggesting considerable variability in growth within each 

subpopulation. To determine the degree of growth heterogeneity within a subpopulation, in-situ 

single cell growth was monitored over a period of 6 days (Figure 11d). A karyotypically unstable 

conditionally inactivated Brca1/p53 knockout primary cell single-cell derived subpopulation 

(Sub1) (SKY data shown later) was compared against karyotypically stable HCT116 cells (data 

shown later).  A total of 400 cells were plated in gridded and labeled T-25 culture flasks for each 

cell type. Single cells were identified on day 1 and growth was monitored daily for a total of 6 

days or until single-cell derived colonies began to merge. Interestingly, single-cell growth 

heterogeneity was significantly more variable in unstable Sub 1 cells than in karyotypically stable 

HCT116 cells (Figure 11e-g, Figure 12). Single-cell derived colonies in the HCT116 cells 

exhibited the same overall growth (range 8-82 cells), exhibiting low growth heterogeneity, as 
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measured by the coefficient of variation (CV), 44% (Figure 13). In contrast, single-cell derived 

unstable Sub1 colonies exhibited a high degree of heterogeneity in 

their overall proliferation (CV= 200%; Figure 13). Most cells had slow-to-moderate proliferation 

and only a few exhibited very high proliferation; additionally, some cells did not grow at all. For 

example, one highly proliferative cell of the unstable Sub1 colony grew to 593 cells in just 6 days. 

A significant disparity in growth among unstable Sub1 cells suggests that traditional  

   

Figure 12: Growth heterogeneity comparison between unstable cells and stable cells 

 

 

 

 

Growth heterogeneity was compared between unstable Sub1 cells and stable HCT116 cells. CV 

was calculated and averaged among 5 experiments. Unstable cells exhibit significantly increased 

growth heterogeneity than stable cells (students t-test, p≤0.001) 
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Figure 13: Average is a poor measure for genomically heterogeneous cell populations 

 

 

 

Statistical averages are not representative measures for genomically heterogeneous cell 

populations. A) A composite karyotype was generated that averaged all normal and derivative 

chromosome frequencies, thus homogenizing genomic heterogeneity. The composite karyotype 

exhibits none of the variation that is characteristic of heterogeneous cell populations. B) Diagram 

of in-situ single colony growth of unstable cells. Cell proliferation was enumerated and averaged 

over 6 days, higher proliferating cells were compared against low proliferating cells. C) Single 

colony growth of unstable and stable cells. Most unstable cells grew at a slow to moderate rate and 

only few cells were highly proliferative. In contrast, stable cells exhibited the same, uniform 

growth. Average colony growth measured at 73 cells  and 41 cells for unstable and stable cells 

respectively. While average colony growth accurately represent stable cells, unstable cells are not 

accurately characterized through average-based measures. 
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methods involving the statistical average may be inappropriate assessments for population-level 

dynamics. 

The arithmetic mean is a poor measure for genomically unstable cell populations 

Genome heterogeneity that is mediated by genomic instability has significant biological 

consequences. Elevated genome heterogeneity leads to increased evolutionary potential, as 

evidenced by the instability-mediated heterogeneous single cell growth rates and genome 

instability-mediated transcriptome heterogeneity (Stevens et al. 2014). This high level of genome 

heterogeneity warrants closer attention, as it presents a problem for most current technical and 

analytical methods used to characterize cell populations. For example, using average-based 

research methods may lead to results that do not accurately characterize a cell population where 

genome instability is high.  

 To demonstrate the challenges posed by using average-based methods for unstable cell 

populations, the daily proliferation of all single-cell derived colonies in HCT116 cells and unstable 

Sub1 cells were averaged and compared against the actual single cell growth profiles (Figure 13). 

Single cell growth of unstable Sub1 cells manifest in a non-normal growth distribution (Shapiro-

Wilkes normality test, p≤1.0x10-5), while stable HCT116 cells exhibited a normal growth 

distribution (Shapiro-Wilkes normality test, p≤0.5). Growth in unstable Sub1 cells was 

significantly more diverse, as total colony growth had a much larger range than stable cells. In 

stable HCT116 cells, each colony roughly contributed the same proportion of cells to the overall 

population. However the dynamics changed for unstable Sub1 cells, as only a few cells were very 

highly proliferative and were responsible for generating most of the population growth. For 

example, one single-cell derived colony in Sub1 cells was responsible for generating 70% of 

sample growth, as compared to stable HCT116 cells where each colony contributed no more than 
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10% of overall growth. This indicates that average profiles are not suitable for cell populations 

with a high degree of genome level heterogeneity (Figure 13). In unstable Sub1 cells, the arithmetic 

mean (AM) is measured at 73 cells per colony and day 6 proliferation ranged between 1-593 cell 

per colony. A majority of cells sampled fell well short of the 73 cell/colony average because the 

highly proliferative cells, or in other words, the AM is much greater than the median. In contrast, 

stable HCT116 cells had a 41 cell per colony average, and total proliferation ranged between 8-82 

cells. 

Discussion 

 Most would agree: heterogeneity is a well-accepted feature of cancer cells. Despite its 

recognition, it is rarely systematically documented and discussed much less for its impact on data 

presentation. The data presented here demonstrates the existence of heterogeneity at extremely 

high levels, where single cells of unstable cell populations are very difficult to clone. In addition, 

a high degree of karyotype heterogeneity has significant effects on cell population dynamics. 

Karyotype heterogeneity leads to drastic growth heterogeneity, which is in stark contrast to the 

generally accepted concept that all cells in a cell population grow and divide at relatively the same 

rate. The data presented earlier clearly demonstrates that, at the population level, unstable cells 

exhibit different PD rates and single cell proliferation. Furthermore, most unstable cells 

contributed little to overall population growth, while a few highly proliferative cells generated 

most of the population growth. These findings clearly demonstrate that karyotype heterogeneity 

has significant research and clinical significance, and further indicate that a reevaluation of 

fundamental biological principles is warranted.  

 While genome-level heterogeneity is common among cancer cells, it is usually ignored or 

not measured. Current popular research strategies report the AM, and sometimes the geometric 
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mean. However means and other statistics related to the first moment 
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represented by the second moment 2
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 and its modifications, like variance, standard 

deviation, coefficient of variation (CV), and average variation. Some second moment indices use 

first and second moments, while means only use the first moment. Thus, the use of statistical means 

to characterize and assess genomically heterogeneous cell populations may not produce reliable 

measures, especially as outliers are typically unaccounted for in many average-based measures or 

techniques that are commonly used in biomarker discovery and drug design.  

In addition, the standard deviation or standard error of the mean are commonly included in 

the graphical representation of data, however it is not scale-free and therefore cannot be used to 

compare against the variation of a different sample. In order to demonstrate how the AM is a poor 

measure of genomically heterogeneous cell populations, a composite karyotype of an unstable cell 

population was generated by averaging the frequencies of all chromosome structures (Figure 13a). 

The single-cell genome-level heterogeneity that was so drastically apparent is virtually nonexistent 

in the composite karyotype. Issues in reporting the AM also extends to growth heterogeneity in 

unstable cell populations (Figure 13b, 13c). For unstable cell datasets, the geometric may be a 

better fit as it excludes outliers and only describes the slower growing cells. However even as they 

may be a better fit for the data set, the geometric mean also represents a poor measure of overall 

population growth. For example, the geometric and arithmetic means were calculated and 

compared in stable and unstable cell populations (Table 2). Calculation of the geometric mean 

results in a 19 cell per colony average, and while this number is more representative of most of the 

colonies sampled, it does not account for total population growth. Statistical outliers are not 
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frequent events, and their occurrence may depend on probability. However, there still is 

considerable variation in unstable cells (Figure 11g). Therefore both statistical outliers and 

variation are important to population growth, and statistical 

 

Table 2: Inadequacies of statistical mean to describe growth of heterogeneous cell 

populations 

 

 

 

 

 

 

 

 

 

The arithmetic and geometric means were calculated for both stable and unstable cells. The 

arithmetic mean can be reliably used to assess stable cell populations that are clonal, but not 

unstable cells that exhibit a large degree of genome heterogeneity. The geometric mean was also 

calculated, which tends to exclude outliers in its calculation. While the geometric may describe 

average growth of slower growing unstable colonies, it does not reliability characterize the entire 

cell population.   

 

 

 

means do not accurately characterize population dynamics in unstable cell populations. 

 Genome heterogeneity and genome heterogeneity-mediated growth heterogeneity have 

obvious significance related to basic and clinical research. The statistical mean is a measure that 

can be accurately used to assess cell populations that are genomically homogeneous, like normal 

homeostatic or developmental conditions. However, statistical means are not appropriate for 

Table 1: Inefficiency of statistical means to describe population growth

Mean colony size Estimated total population          
Difference from actual 

population

Arithmetic mean, Heterogeneous 

subpopulation
73 1314 cells 8 cells

Arithmetic, HCT 116  cells 41 943 cells 7 cells

Geometric mean,            

Heterogeneous subpopulation
19 342 cells 980 cells

Geometric mean, HCT 116 cells 37 806 cells 99 cells



www.manaraa.com

  72 
 

profiling cell populations with elevated genome-level heterogeneity, such as cancer cell 

populations or other conditions of the pathological context. During cancer macro-cellular 

evolution, there is no “average” cell because system heterogeneity is the key dominant feature.  

Using the average would generate an inaccurate assessment of the cell population, as averages 

eliminate heterogeneity, the key defining feature of cancer, which is reflected by the dynamic 

NCCA/CCA cycle and NCCA frequency. In contrast, statistical averages can be accurately used 

during micro-cellular evolution (Darwinian evolution) because system heterogeneity is low and 

most change that occurs is at the gene-level. Various evolutionary cancer models that are linear 

and eliminate heterogeneity can be accurately assessed by statistical averages (Horne et al. 2013). 

Therefore, the inappropriate use of the statistical average poses a challenge in cancer modeling 

and chemotherapy drug design and targeting.  

Targets chosen through statistical averages may lead to increased resistance and off-target 

effects (Heng et al. 2011a, Horne et al. 2013, Abdallah et al. 2014). As an example, while PD rates 

has its inaccuracies, it is used in clinical settings to measure the growth rates of tumors (Mehrara 

et al. 2007). In order to bypass the PD and its inaccuracies, a number of other indices have been 

proposed to measure tumor growth. While some may be superior to PD rates, they still employ the 

average and stationary growth models that make them fall short of accurately assessing growth 

heterogeneity of tumors (Mehrara et al. 2007). Rather, the coefficient of variation (CV) and other 

indices such as standard deviation or variance, should be employed under conditions when 

genome-level heterogeneity is high. In addition, techniques that measure the average cell across 

an entire cell population, which include genome sequencing, RNA-sequencing, expression 

profiling, western blotting, etc., are commonly used in biomarker identification and drug targeting. 

An increased number of studies are moving to single cell platforms, however, efforts like the 
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TCGA, the Cancer Genome Sequencing Consortium, and other sequencing projects continue their 

use of average-based profiling. Applications of these strategies may exhibit some initial success, 

but long-term monitoring of tumor growth demonstrates that the tumors regrow, suggesting that 

only more dominant subpopulations are profiled through average-based methods, thus excluding 

from the initial assessment the outlier cells and more rare subpopulations that may play a more 

significant role in the long-term evolution of cancer (Abdallah et al. 2014). 

It is difficult to investigate single cell dynamics using in vivo model systems. In vitro 

experimental systems represent effective strategies to systematically investigate single cell 

dynamics under various conditions for variable time periods. It has been often noted that the results 

presented may in fact be due to artifacts of cell culture, and the use of in-vivo model systems or 

human ex vivo samples may reveal different findings. This is not the case, as the results presented 

in this chapter that reflect the dominance of genome-level heterogeneity in cancer have been 

confirmed by multiple genome sequencing cancer projects and other studies (Navin et al. 2011, 

Baca et al. 2013). For example, single cell sequencing completed on 100 breast cancer cells 

revealed that cancer evolution is punctuated, not stepwise (Navin et al. 2011). Individual cells 

exhibited copy number changes and a large number of gene mutations that were not conserved. 

Finally a study by Baca et al sequenced prostate cancer tumors to demonstrate that prostate cancer 

evolves through a stochastic process called chromoplexy (Baca et al. 2013). Chromoplexy is 

described as the genome-wide reorganization of large segments of the genome. These studies have 

confirmed the two phases of cancer evolution that was first described based on karyotype analysis 

(Heng et al. 2006c, Heng et al. 2009, Ye et al. 2009, Heng et al. 2010). 

 Genome-level heterogeneity is also commonly observed in normal healthy tissue (Iourov 

et al. 2008). As an example, normal mammalian livers are found to exhibit a large degree of 
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polyploidy than in vitro systems that range from 2N-16N (Duncan et al. 2010, Duncan et al. 2012). 

Furthermore, the chimeric genome has been associated with a number of human diseases (Iourov 

et al. 2008, Heng 2013c, Heng et al. 2013a, Campbell et al. 2015). NCCAs are also present in 

normal human lymphocyte cultures (Heng et al, in preparation). While normal tissues do only 

exhibit a low degree of genome-level aberrations, NCCAs are elevated under disease conditions. 

NCCA frequency in human lymphocytes of a number of diseases including cancer, ranged from 

20%-40% (Heng et al, in preparation). Furthermore, the monitoring of NCCA frequency in a 

number of mouse cancer models revealed a high level of genome heterogeneity in each model (Ye 

et al. 2009). Under normal physiological or homeostatic conditions where the NCCA frequency is 

low, the statistical average remains an appropriate measure for the characterization and assessment 

of cell populations. However, the average is ill-suited for conditions where genome-level 

heterogeneity is high. 

 The data presented earlier in this chapter challenges the notion that cell populations are 

mostly isogenic. For the most part, cancer cell populations are not isogenic, as multi-level 

heterogeneity and especially genome-level heterogeneity are key features of the disease that have 

significant effects on cancer evolution. A direct link between genome-level heterogeneity and 

systems-heterogeneity, such as growth heterogeneity, may exist. Heterogeneity exists at different 

molecular levels, including gene mutations (Lawrence et al. 2013), transcription (Stevens et al. 

2013, Stevens et al. 2014), biochemical signaling pathways (Chakraborty and Roose 2013, Hartzell 

et al. 2013), the tumor microenvironment and the response to drug treatment (Blagosklonny 2006).  

It has been difficult to assess the relationship between the different types of heterogeneities as most 

studies do not address genome-level heterogeneity. The genome represents the highest level of 

genetic organization, and the genome package is responsible for punctuated macroevolution of 
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cancer, therefore the effort to unify genome-level heterogeneity to systems-heterogeneity is highly 

significant. This type of analysis may also be used to profile single dominant cells for drug 

treatment (Blagosklonny 2006). 

 Finally, a high degree of genome-level heterogeneity may also provide some explanation 

to the challenges faced with reproducibility (Heng 2013a). While the same cell lines may be used, 

the genomes may be altered, thus leading to different results. This has been demonstrated by our 

study that links genome heterogeneity transcriptome heterogeneity (Stevens et al. 2013, Stevens 

et al. 2014). Many different mouse models have been engineered to investigate the functions of 

specific genes or dysregulated pathways (Hartzell et al. 2013). However, while the dysregulation 

of a particular pathway can be highly penetrant (due to any gene member being mutated), pathway 

switching remains a dominant feature of unstable cancer cells that can be exploited to acquire 

resistance (Heng et al. 2013a, Stevens et al. 2013, Stevens et al. 2014). Elevated genome-level 

heterogeneity can also provide an explanation for the large disconnect between experimental 

systems and clinical samples. Clinical samples are often more heterogeneous and complicated due 

to increased genome heterogeneity, especially compared to homogenous mouse strains that are 

inbred for several generations. Taken together, genome-level heterogeneity is a major player of 

cancer, as genome replacement represents the key feature of cancer evolution and is responsible 

for the initial growth of tumors, progression, metastasis and drug resistance. A large portion of 

conventional thought regarding cancer were originally formulated using average-based methods 

are in need of re-evaluation, as the average cancer cell does not exist. 

 

CHAPTER 4: DETECTION OF FUZZY INHERITANCE 

Introduction 
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 The role of heterogeneity is especially significant in several biological processes, which 

includes the cancer evolutionary process (Heppner 1984, Rubin 1984, Brock et al. 2009, Heng 

2009, Marusyk et al. 2012, Heng 2013b, Heng et al. 2013a, Huang 2013). In cancer, 

genetic/nongenetic heterogeneity is overwhelming, as it exists at multiple levels including the 

gene, epigenetic and genome levels (Brock et al. 2009, Heng et al. 2011a, Huang 2013). 

Furthermore, due to the more dominant effect that genome-level changes have on an individual 

cell, the genetic blueprint of a system is represented by karyotype-defined system inheritance, as 

opposed to gene-level parts inheritance, thereby calling for the redefinition of inheritance (Heng 

2009, Heng et al. 2011a, Heng et al. 2013a).  

 The stochastic generation of NCCAs, especially in cancer cell populations where they are 

the dominant form of heterogeneity, creates a dilemma for the understanding how heterogeneity is 

regulated, and conventional mechanisms of precise inheritance in somatic cell evolution. 

According to conventional views, genetic variation is largely generated by errors at low 

frequencies, followed by clonal expansion of cells with the accumulated genetic change. Here, 

inheritance mechanisms are precise, as a mother cell passes the same karyotype to its daughter 

cell, and accumulated genetic change is traceable. However, a high degree of genome-level 

heterogeneity has been documented and is inconsistent with mechanisms of precise inheritance. In 

fact, the degree of heterogeneity reaches such high levels that it cannot be accounted for by 

Darwinian evolution (Ling et al. 2015). In most cases, genetic change is not conserved and the 

degree of heterogeneity is the only consistent feature. Specifically, most cancer cell populations 

exist in the punctuated macro-cellular evolutionary phase where no specific genome dominates 

and NCCAs are significantly high. The constant generation of NCCAs indicates that system 
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inheritance remains discontinued, as an identical genome or karyotype is not passed from mother 

cell to daughter cell (Heng et al. 2006c, Heng HQ 2016). 

Genetic inheritance can be defined as the passing of bio-processes from a mother cell to a 

daughter cell. Here, a daughter cell inherits material that carries genetic information from the 

mother cell. However, conventional genetic inheritance mechanisms are challenged by data 

generated from natural rather than lab settings: first, while a vast majority of cells can inherit an 

identical karyotype from their mother cells, a given number of cells exhibit de-novo NCCAs that 

are generated in each cell division; second, during punctuated macro-cellular evolution, a majority 

of daughter cells do not inherit the same genome as the mother cell, rather daughter cells all exhibit 

drastically new genomes. If the same karyotype is not inherited, but a given degree of 

heterogeneity is inherited, there must be a mechanism that permits cells to inherit altered system 

inheritance. This new mechanism of inheritance is unlike precise inheritance because there is no 

precision to maintain a specific genome, particularly in the punctuated macro-cellular evolutionary 

phase. 

What evolutionary advantage is associated with passing heterogeneity, or NCCAs, as 

opposed to stable, clonal genetic change? Cell populations that exhibit elevated NCCA frequency 

have heightened evolutionary potential, as changes to the karyotype alter the genome context (gene 

content plus genomic topology) (Heng 2009). During selection events, NCCA frequency 

significantly increases and remains elevated until a stable cell(s) is selected (Heng et al. 2006a, 

Heng et al. 2006c, Heng et al. 2011a). After the cell population stabilizes, NCCAs are still present 

but at a lower frequency that remains constant over multiple passages. The relationship of NCCAs 

to evolution and their continued presence in a cell population at a stable frequency led to the 

question, how do cell populations maintain their degree of heterogeneity? 
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A number of cancer evolution studies conducted using in vitro evolutionary models have 

demonstrated that, while the final karyotypic products or specific chromosomal aberrations, are 

different, the relationship between NCCAs and CCAs remains the same (Heng et al. 2006c, 

Lawrenson 2010). Specifically, in different evolutionary runs, the frequency of NCCAs was stable 

in parallel stages of evolution. Therefore, it is hypothesized that a new form of somatic cell 

inheritance exists, termed fuzzy inheritance, which regulates and maintains the degree of cell 

population heterogeneity. Specifically, a given degree of heterogeneity is passed over generations, 

as opposed to specific changes, and can be seen at the cell population level. Furthermore, the 

passing of heterogeneity functions to maintain the evolvability of the cell population. 

In order to test the mechanism of fuzzy inheritance, a panel of single cells were isolated 

and their inherited traits were monitored, including karyotype and growth rate, over multiple 

generations at the single cell level. It was discovered that unstable cell populations and stable cell 

populations drastically differ regarding how their inherited traits are passed, and ultimately 

suggested that genome status, or the stability of the genome, is what directs heritable population 

behavior. First, it is demonstrated that, when the genome is unstable, specific karyotypes cannot 

be inherited, but a similar degree of karyotype heterogeneity can be passed from generation to 

generation. In contrast, stable genomes can be passed over multiple generations with high fidelity, 

and are accompanied with a lower frequency of NCCAs. Single cell growth analysis found that in 

unstable cell populations, growth rates were significantly more heterogeneous than stable cell 

populations. Most cells grew at slow or a modest rate while only a few cells were highly 

proliferative and drove overall population-level growth. Furthermore, a similar degree of 

karyotype and growth heterogeneity were restored from a single cell, regardless of the initial 

karyotype or growth rate. Finally, it is demonstrated that single cells can continue to restore 
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karyotype and growth heterogeneity even after multiple generations. Altogether, these data support 

that a new type of inheritance exists where, in unstable cell populations, rather than specific 

changes being passed, a similar degree of heterogeneity is passed, and is seen at the cell population 

level. This is termed fuzzy inheritance, which can offer an understanding towards cancer evolution 

and drug resistance by explaining how cell populations retain their evolvability. 

Materials and Methods 

Cell lines: Conditionally inactivated Brca1/p53 isolated from the surface epithelium of C57/BL6 

mouse ovaries were a generous gift from Dr. Barbara Vanderhyden at the University of Ottawa 

(Clark-Knowles et al. 2007). Cells were maintained in low glucoses DMEM supplemented with 

10% FBS and antibiotics. Standard cell culture procedures were used to maintain cell lines. Serial 

dilutions were performed to isolate a panel of single cells 60 days after ovary resection from mice. 

HCT116 cells and HCT116-E6 cells were a generous gift from Dr. Bert Vogelstein (Lengauer et 

al. 1997). HCT116 cells were maintained in RPMI supplemented with 10% FBS and antibiotics. 

HCT116-E6 cells were maintained in low glucose DMEM supplemented with 10% FBS, 

antibiotics and G418. Standard cell culture was used to maintain cell lines. 

Mefs (mouse embryonic fibroblasts) were a gift from Dr. David Chen from the University of 

Texas. Cells were transformed using SV40. Cells were maintained in low glucose DMEM 

supplemented with 10% FBS and antibiotics. Standard cell culture was used to maintain cell lines. 

Cytogenic metaphase slide preparation and spectral karyotyping (SKY): Cytogenetic slides were 

prepared as previously described (Heng et al. 1992).  

SKY was completed on metaphase slides according as previously described (Ye et al. 2009).  

Karyotypic analysis: Karyotypic analysis was completed as previously described. All normal and 

abnormal chromosome structures were represented on karyographs (Nicholson and Duesberg 
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2009). Karyographs are a visual presentation of single cell genome-level heterogeneity. The x-axis 

represents chromosome structures (normal and abnormal), while the y-axis represents the 

frequency of each structure. Each line represents a single cell.  

Statistical analysis: All chromosome structures (normal and abnormal) are measured in order to 

determine karyotype heterogeneity. Power calculations were completed as previously described in 

the methods sections of chapters 2 and 3 (Abdallah et al. 2013).  

In situ single cell counting: Single cell growth variation experiments were conducted in gridded 

T-25 cell culture flasks, as previously described.  

Isolation of fast- and slow- growing subcolonies for generation experiments: Heritability of 

karyotype heterogeneity and single cell growth heterogeneity was completed by selecting fast- and 

slow- growing colonies over five generations using in vitro cell culture techniques (Figure 21). In 

situ single cell growth was first performed in unstable Sub1 cells, HCT116 cells, and stable 

conditionally inactivated Brca1 mouse ovarian epithelial cells as previously described. Cell growth 

was monitored for 6 days and colony population sizes were enumerated. Fast- and slow- growing 

subcolonies were identified for isolation, and then isolated on day 6 using 0.25% trypsin 

(Mediatech) and sterile cloning rings. After 1-2 weeks of continuous cell culture, cells were 

harvested for chromosome analysis and in situ single cell counting was performed. Each isolation 

of a fast- and slow- growing colony constituted a generation. This procedure was completed for 

two generations in HCT 116 cells and 5 generations in unstable Sub1 cells and stable Brca1 

knockout cells. 

Results 

Conceptual considerations 
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It is first necessary to understand why karyotype change is compared over multiple cell 

passages to illustrate the mechanism of fuzzy inheritance. According to the Genome Theory, each 

specific karyotype represents a unique system, as changes to the genome alters the heritable 

genome context. Because the karyotype is the blueprint that defines a biological system, a mother 

cell that passes the same karyotype to its daughter cell is passing the same system inheritance. 

While an identical karyotype is passed, there is still some variation at the parts level (example, 

gene-level) that can slightly alter or fine tune the system. However, system inheritance is altered 

if the mother cell passes a different karyotype. Because changes to genome topology alters genome 

context, a mother cell that passes an altered system inheritance to its daughter cell are both 

considered different systems. Therefore, the passing of altered system inheritance can be illustrated 

by monitoring the pattern of karyotype change. In a similar fashion, the pattern of cell growth, cell 

death, and other inherited traits can also be compared. 

It is also necessary to measure the degree of heterogeneity, which can be achieved by 

measuring stochastic variation. At the genome level, stochastic variation exists in the form of 

NCCAs (Heng et al. 2006a, Heng et al. 2006c, Heng et al. 2011a), therefore NCCAs are used to 

measure genome heterogeneity. At the gene level, gene mutation heterogeneity can be measured 

by the frequency of random gene mutations. In a similar fashion, growth heterogeneity can be 

measured by the differences in single cell growth rates. 

Karyotype heterogeneity is heritable 

 Heterogeneity is a key feature of cancer and is increasingly studied to understand clonal 

evolution in cancer (Roschke et al. 2002, Heng et al. 2009, Nicholson and Duesberg 2009, Hanahan 

and Weinberg 2011, Gerlinger et al. 2012, Greaves and Maley 2012, Huang 2012). Most cancers 

exist in the unstable macro-cellular punctuated phase of evolution where most genome-level 
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changes are not clonal. Understanding how genetic and nongenetic changes in a single cell affects 

an entire cell population is a challenging task. In the natural situation, the fact that most cancer cell 

populations are not clonal is inconsistent with conventional theories of clonal evolution and precise 

inheritance mechanisms. It is thus necessary to reevaluate the process of cancer evolution, and 

specifically the role and significance of stochastic genome-level changes. 

 In order to monitor the pattern of genome change during cancer evolution, pure populations 

of cells were made by cloning single cells from spontaneously transformed, conditionally 

inactivated Brca1/p53 mouse ovarian surface epithelial (MOSE) primary cells (Clark-Knowles et 

al. 2009). Isolation of single cells is a preferred method for generating isogenic cell populations, 

as genetic changes should be minimal in a short period of time. By using SKY, karyotype changes 

were monitored in order to determine the degree of genome-level change. Within 4-8 weeks of 

continuous, standard cell culture conditions, all single-cell derived pure populations were found to 

exhibit a high degree of genome-level heterogeneity (Figure 14). The data also revealed that no 

two cells had identical genomes. Furthermore, there were no shared karyotypic abnormalities 

between the parent cell population and two single-cell derived subpopulations, as all cell 

populations exhibited the same, high degree of novel karyotype change.  

The experiment was repeated in unstable human colorectal cancer cells, HCT116-E6 line. 

Two single-cell derived subpopulations were developed, and each subpopulation exhibited 

approximately the same degree of shared and novel change as the parent cell population, indicating 

that the same degree of karyotype change is inherited (Figure 15). These findings demonstrate that 

the degree of genome-level heterogeneity found in the single-cell derived subpopulations was 

similar to the parent cell population before cloning, and further suggests that the same degree of 

heterogeneity can be maintained without passing a specific abnormal karyotype. 
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Because all cells analyzed exhibited unique genomes, it was concluded that the genomes 

were altered during cell division. Additionally, the subpopulations all originated from single cells 

and were under continuous culture conditions for only a short time period, suggesting a single cell 

that originates from an unstable cell population can generate population-level heterogeneity by 

passing altered karyotypes to its daughter cells. This conclusion conflicts with conventional views 

on how heterogeneity is established and maintained, where both normal and abnormal cells will 

pass that same normal and abnormal karyotypes, respectively, to its daughter cell. In both 

scenarios, heterogeneity of the cell population is maintained. Interestingly, subclones isolated from 

karyotypically stable HCT116 cells (which contains an abnormal karyotype) have the same 

karyotype as the parent cell population. Even after long-term continuous cell culture, HCT116 

cells maintained the same karyotype (Shih et al. 2001, Knutsen et al. 2010).  

These findings are in agreement with previous studies that demonstrate that, during 

punctuated macro-cellular evolution, karyotypic change is stochastic, as the same karyotype 

cannot be inherited (Heng et al. 2006c). Stochastic, punctuated evolution has been confirmed by 

cancer genome sequencing studies (Navin et al. 2011, Baca et al. 2013, Wang et al. 2014). 

Ultimately, these results suggest that heterogeneity is a heritable feature, as a specific karyotype 

was not passed and heterogeneity was restored from a single unstable cell. This also occurs during 

punctuated evolution, where cell populations are unstable new genomes are generated at 
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Figure 14: Single cells pass karyotype heterogeneity to daughter cell populations

 

Karyotype heterogeneity is inherited from mother cell to daughter cell population. A) SKY 

karyograph of early passage wild type mouse ovarian surface epithelial cells. As expected, most 

cells exhibit normal karyotypes. B) Karyograph of the parent cell population, conditionally 

inactivated Brca1/p53 mouse ovarian surface epithelial cells which exhibits high genome 

heterogeneity. Each cell exhibits unique NCCA frequency. C-D) Karyograph of single cell-derived 

subpopulations, Sub 1 (C) and Sub2 (D). Each cell in both subpoplations exhibited unique 

karyotypes. No shared, clonal karyotypic abnormalities were detected in any cell population. 

Rather than inheriting specific karyotypic structures, karyotype heterogeneity is inherited from a 

single cell. 
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Figure 15: Inheritance of karyotype heterogeneity in HCT116/E6 cell line 

 

 

 

 

 

 

Spectral karyotyping was completed on HCT116/E6 parent cells and two single cell-derived 

subpopulations. The number of cells that exhibit shared and novel karyotype structures are 

approximately the same across all three cell populations, indicating that a single cell restored a 

similar degree of karyotype heterogeneity, or in other words, the degree of karyotype heterogeneity 

is inherited. 
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each cell passage and identical karyotypes cannot be passed. Altogether, this suggests that 

conventional mechanisms of precise inheritance are unable to describe somatic cell evolution for 

unstable cell populations. Somatic cell inheritance is likely to be regulated through an alternate 

mechanism that regulates heterogeneity by passing the degree of change, or a stochastic state. 

Growth heterogeneity is heritable 

 Genome heterogeneity has previously been linked with other cellular features such as 

transcriptome heterogeneity, tumorigenicity, cancer cell evolution, and drug resistance (Heng et 

al. 2006a, Heng et al. 2006c, Stevens et al. 2007, Ye et al. 2009, Heng et al. 2013a). If the degree 

of genome heterogeneity is heritable, then other features of cell population dynamics, such as cell 

growth, should also be heritable.  Previous studies have demonstrated that various genetic 

manipulations resulted in growth heterogeneity (Kuczek and Axelrod 1987, Abdallah et al. 2013), 

therefore it is hypothesized that genome heterogeneity and growth heterogeneity are linked and 

that the degree of cell growth heterogeneity is heritable. First, in situ single cell growth was 

monitored for 6 days. Sub1 cells, which are genomically unstable, exhibited a large degree of 

variation in their single cell growth rates. Most cells grew at a slow or modest rate, as measured 

by total cell growth per single cell derived colony after 6 days, and only very few cells were highly 

proliferative. In contrast, karyotypically stable HCT116 cells exhibited very little variation in their 

single cell growth rates (Figure 16a, F-test p≤1.0x10-18, Figure 17b-c). If heterogeneity is a 

heritable feature, then it is necessary to demonstrate that heterogeneity is present from the earliest 

cell divisions, as opposed to heterogeneity accumulating over time. In both stable and unstable 

cells, daily growth rates were calculated to define that heterogeneity was present in the earliest cell 

divisions and remained constant for the duration of the assay (Figure 16c).  
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The above data suggest that a link between genome heterogeneity and growth heterogeneity exists. 

In order to elucidate the relationship genome heterogeneity has with growth heterogeneity, the 

single cell in situ growth heterogeneity of different cell lines with differing degrees of genome 

instability was compared. Highly unstable Sub1 cells were compared against moderately stable 

Mef cells (Figure 18) and highly stable early passage MOSE cells. The results demonstrate that 

cell populations with increased genome heterogeneity exhibited a higher degree of growth 

heterogeneity (Figure 16d, Figure 17b-d). Additionally, highly proliferative unstable Sub1 cells 

were significantly more proliferative and more variable compared to moderately unstable Mef cells 

and early passage MOSE cells. This suggests that a link between genome heterogeneity and growth 

heterogeneity, where increased genome instability leads to increased heterogeneity of growth. 

A single cell restores heterogeneity of parent cell population 

The above data demonstrated that Sub1 cells have highly diverse growth rates, and only 

select cells are highly proliferative. However it remains undetermined if all cells are able to 

recapitulate the same degree of heterogeneity in a cell population, or if this feature is reserved for 

select cells. In order to determine whether any cell in a population can restore the same degree of 

growth heterogeneity as the parent cell population, a panel of single cells were isolated from 

stable HCT116 cells and unstable Sub1 cells. In situ single cell growth experiments were carried 

out for each isolated cell. Growth in the unstable Sub1 cell population was expectedly 

heterogeneous. Single cell growth in unstable Sub1 isolates all exhibited a high degree of growth 

heterogeneity similar to the parent cell population. In contrast, the parent HCT116 cell population 

exhibited a small degree of growth heterogeneity. HCT116 isolates exhibited the  
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Figure 16: Growth heterogeneity is heritable 

 

Growth heterogeneity is inherited. A) In-situ single cell growth in stable HCT116 cells and 

unstable Sub1 cells. Stable cells exhibited a uniform growth distribution, as all cells grew at 

approximately the same rate. Unstable cells exhibited heterogeneous growth and only few cells 

were highly proliferative. B) Growth heterogeneity, as measured by the coefficient of variation 

(CV) in stable HCT116 cells (n=3) and unstable Sub1 cells (n=3). Unstable Sub1 cells exhibit 

greater growth heterogeneity (t-test, p≤0.05). C) Daily growth rates were calculated in stable and 

unstable cells. Growth heterogeneity was present at the earliest cell divisions and remained 

constant during the entire experiment. D) Genome heterogeneity is linked to growth heterogeneity.  

Genomically homogeneous primary early passage MOSE cells exhibit minimal single cell growth 

heterogeneity, moderately unstable Mef cells exhibit a small degree of growth heterogeneity, and 

unstable Sub1 cells exhibit significantly greater growth heterogeneity (t-test, p≤0.05).  

Figure 17: Replicates demonstrating growth heterogeneity of various cell populations 
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Kernel density estimates of cell growth for various cell populations. A) Kernel density estimates 

of parent cells and single cell derived subpopulations in both stable HCT116 and unstable 

conditionally inactivated Brca1/p53 mouse ovarian surface epithelial cells. B) Kernel density 

estimates of stable HCT116 cells, displaying uniform cell growth among replicates. C) Kernel 

density estimates of unstable Sub1, displaying bi-modal heterogeneous growth distributions 

among replicates. Most cells grew slowly, while only few cells grew at a fast rate. D) Kernel 

density estimates of moderately stable Mef cells. E) Kernel density estimates of early passage wild 

type MOSE cells, displaying uniform cell growth among replicates. 

 

 

 

Figure 18: SKY of moderately unstable Mef cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heatmap karyograph of Mef cells. Mef cells exhibit mostly numerical NCCAs (aneuploidy), 

conferring moderately unstable genomes. 
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same degree of minimal growth heterogeneity found in the parent cell population. Given the 

considerable difference in the degree of growth heterogeneity between each cell line, the data also 

suggests that each cell population has different degrees of evolutionary potential.  

 Heterogeneity can be inherited over multiple generations 

The previous data suggested that any cell can restore the same degree of growth 

heterogeneity as the parent cell population. In order to determine whether a specific growth rate or 

growth heterogeneity can be passed down to future cell populations, fast- and slow- growing 

subcolonies were isolated from Sub1 cells and HC116 cells, and in situ single cell growth 

experiments were performed (Figure 20a). Interestingly in unstable Sub1 cells, fast- and slow- 

growing subcolonies did not pass on their respective growth rates. Fast- and slow- growing 

subcolonies both restored the degree of growth heterogeneity found in the parent cell population, 

generating cells with a multitude of growth rates. Fast- and slow- growing isolates of HCT116 

cells both displayed single cell growth profiles with significantly less variation. In addition, the 

growth profiles in both fast and slow subcolonies was similar to the parent cell population. (Figure 

20b, Figure 18a).  

Spectral karyotyping was performed on fast- and slow- growing subcolonies of Sub1 and 

HCY116 cells in order to understand the genomic mechanism of the restoration of growth 

heterogeneity. Fast- and slow- growing subcolonies of unstable Sub1 cells exhibited a high degree 

of growth heterogeneity that is similar to the parent cell population. No two cells were identical 

and no direct karyotypic intermediates could be traced. On the other hand, fast- and slow- growing 

subcolonies of stable HCT116 cells exhibited a minimal degree of karyotypic change. Cells 

exhibited very similar genome profiles and many shared karyotypic changes were  
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Figure 19: Each colony restores cell growth heterogeneity 

 

Each single cell is capable of restoring cell population growth heterogeneity. In-situ single cell 

growth experiments were conducted in stable HCT116 cells and unstable Sub1 cells. As expected, 

stable parent cells exhibited a uniform growth distribution and unstable cells exhibited 

heterogeneous growth. In order to demonstrate that each cell is capable of restoring growth 

heterogeneity, each single-cell derived colony was extracted and single cell growth was tested. In 

stable HCT116 cells, each single-cell colony exhibited uniform growth, similar to parent cells. In 

unstable Sub1 cells, each single-cell derived colony exhibited the same heterogeneous growth as 

the parent cells. Altogether this indicates that each cell is capable of restoring growth 

heterogeneity. 

 



www.manaraa.com

  93 
 

Figure 20: Genome and growth heterogeneity restored 
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Restoration of genome and growth heterogeneity. A) Diagram of experiment design. In-situ single 

cell growth experiments are conducted, and fast- and slow- growing subcolonies are isolated to 

determine whether they can restore growth heterogeneity or specific growth rate. B) Results of 

restoration of growth heterogeneity. In stable cells, both fast- and slow- growing subcolonies 

restored a similar degree of growth heterogeneity (homogeneity). In unstable cells, both fast- and 

slow- growing cells restored the same heterogeneous growth profile as the parent cell population. 

SKY analysis was also completed on all subpopulations. The parent stable cell population (C) was 

mostly clonal with little genome heterogeneity. A similar degree of genome heterogeneity was 

restored by fast-growing (D) and slow-growing (E) subcolonies. Unstable parent cells (F) 

exhibited a high level of genome heterogeneity that was similarly restored in fast-growing (G) and 

slow-growing (H) subcolonies. PCA analysis was completed on unstable (I) and stable (J) cell 

populations. In unstable cells, single cells were distantly spaced in each of the cell populations, 

indicating a large degree of variation and heterogeneity. In contrast, stable cells (J) were tightly 

clustered, indicating a small degree of variation between individual cells. 

 

 

present in all cell populations (Figure 20c-h). To determine whether the amount of variation 

between the parent cell population was similar the fast- and slow- growing subcolonies, PCA 

analysis was completed (Figure 20i-j). Single cells of the unstable Sub1 parent population and both 

fast- and slow- growing subcolonies were similarly spaced far apart, indicating a wide degree of 

variation and heterogeneity. In contrast, stable HCT116 parent and fast- and slow- growing 

subcolonies were more tightly clustered, indicating a much lesser degree of heterogeneity and 

more similar relatedness between cells. 

 The heritability of genome heterogeneity and growth heterogeneity was further confirmed 

by isolating fast- and slow- growing single cell-derived colonies over multiple generations in 

unstable Sub1 cells and in a stable, MOSE single cell derived subline conditionally inactivated for 

Brca1. In situ single cell growth heterogeneity was profiled at every generation (Figure 21). 

Briefly, single cell in situ growth experiments were perfumed; this first experiment is referred to 

as generation 1 (G1) or parent generation. After 6 days, fast- and slow- growing colonies were 

identified, isolated, and cultivated. These isolated colonies were referred to as generation 2 fast  
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Figure 21: Diagram of fast-and slow- selection experiment for multiple generations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fast- and slow- selection experiment. In situ single cell growth was performed on unstable and 

stable cells; this first growth experiment is referred to as generation 1 (G1). After 6 days of growth, 

fast- and slow- growing colonies were identified and isolated, to form their own subpopulations. 

These subpopulations are referred to as generation 2 fast (G2F) or generation 2 slow (G2S). 

Selection continued for five generations.  
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(G2F) or generation 2 slow (G2S). Selection of fast- and slow- growing colonies continued for 

five generations. In unstable cells, the continuous selection of fast- and slow- growing single cell-

derived colony resulted in the restoration of growth heterogeneity instead of the selection of a 

specific growth rate, as each respective population consistently generated fast- and slow- growing 

cells regardless of the initial growth rate (Figure 22a-b, 23a-b). In stable cells, the continuous 

selection of fast- and slow- growing cells led to the selection of an increased or decreased growth 

rate after multiple successive selections. This suggests that a growth rate can be selected in stable 

cells (Figure 22c-d, 23a-b). Spectral karyotyping was next performed after 5 selections to 

determine if a specific genome or genome heterogeneity is passed in stable and unstable cells. In 

unstable cells, fast- and slow- growing cells after five successive selections restored the degree of 

genome heterogeneity found in the parent population. The frequency of novel structural 

chromosomal change specific to only a particular generation was the same across all cell 

populations and was significantly greater than shared structural chromosomal change (Figure 24). 

The dynamics change in stable cell populations. In stable cells, shared structural chromosome 

change significantly outnumbered novel chromosome change and remained consistent across the 

multiple generations (Figure 24).  

 It is interesting to note that when the previous experiment was repeated in stable cells, the 

growth rate saw an initial increase over the first three generations similar to the first trial. However, 

the growth pattern changed at the fourth and fifth selections of fast-growing cells. Rather than the 

growth rate steadily increasing, single cell growth became heterogeneous and resembled the 

growth profile of an unstable cell population (Figure 25a-b). The increased growth heterogeneity 

was accompanied by an increase in the growth CV (Figure 26b). Because genome heterogeneity 

and growth heterogeneity are linked, this suggests that the genome instability of the cell population 
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had slightly increased. To confirm whether genome instability had increased, spectral karyotyping 

was completed on generations 1 and 5 in both replicates (Figure 26a). After 5 selections, SKY 

analysis showed a higher percentage of novel structural chromosome change in run 2, suggesting 

the genome status had changed to become slightly more unstable and thus altering the degree of 

heterogeneity that can be inherited. 

Figure 22: Growth heterogeneity passed over several generations 

 

Growth heterogeneity is passed even after multiple selections. Fast- and slow- growing single cell-

derived colonies were continuously selected over several generations. In unstable Sub1 cells, 

selection of a fast- or slow- growing colony resulted in the redistribution of growth heterogeneity, 

as daughter cell populations exhibited both fast- and slow- growing cells. In stable cells, selection 

of fast- and slow- growing single cell-derived colonies over several generations led to the selection 

of a fast- and slow- growing phenotype. 
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Figure 23: Growth heterogeneity of fast- and slow- growing colonies over multiple selections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth heterogeneity, as measured by the coefficient of variation, for five selections of fast- (A) 

and slow-growing (B) colonies in unstable and stable cells. The CV largely remained the same 

across all selections for stable and unstable cells, suggesting that the same degree of growth was 

passed over several generations.  
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Figure 24: SKY analysis of generations 1 and 5 of unstable and stable cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

SKY analysis was completed on the parent generations (G1: generation 1) and the fifth selection 

of fast-growing colonies (G5F: generation 5, fast). In unstable cells, both G1 and G5F exhibited 

the same degree of novel and shared chromosome structural change. Novel changes outnumbered 

shared changes, and there was no significant difference in the degree of novel change even after 

multiple selections, indicating that the potential to generate genome heterogeneity is passed. The 

dynamics change in stable cells, as shared changes were dominant and novel changes were few. 

The same degree of shared and novel changes remained constant even after multiple selections, 

indicating that a minimal degree of genome heterogeneity was passed, even after multiple 

selections.  
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Figure 25: Biological duplicates of growth selection experiment in stable cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biological replicates in stable cells representing single cell growth in situ experiments after 5 

selections of fast-growing colonies. A) In the first run, the growth rate increased after multiple 

selections of fast-growing colonies, indicating that a growth rate can be selected when the genome 

is unstable. B) However, the dynamics change in a duplicate experiment. While the growth rate 

increased after 3 selections, single cell growth became heterogeneous, resembling the single cell 

growth dynamics of unstable cells, after the fourth and fifth selections. Altogether, this suggests 

that a stable growth rate can be selected so long as the genome remains the stable.   
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Figure 26: SKY analysis and growth heterogeneity of biological replicates of stable cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SKY and growth CV of stable cell replicates. A) SKY results describing the frequency of novel 

and shared chromosome change in biological replicates of stable cells. In the first run, there was 

no significant difference between novel and shared chromosome change after five selections. In 

the second run, the novel and shared chromosome change ratios changed, as the frequency of novel 

change increased after five selections. This indicates that genome instability had increased slightly, 

altering the genome status and the degree of genome heterogeneity that can be inherited. B) CV 

measuring growth heterogeneity for the selection of fast-growing colonies in each biological 

replicate in stable cells. In the first run, the CV largely remained the same for the first three 

generations, then decreased in the last two generations. The decreased CV was accompanied with 

an increase in growth rate, as more cells exhibited the same faster growing phenotype after 

selection. In the second run, the first three generations exhibited the similar CV values, however 

the CV increased at generations 4 and 5. The increased CV is accompanied with increased growth 

heterogeneity and increased novel chromosome change.  
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 Taken together, this data suggests that a single cell can restore the degree of both genome 

and growth heterogeneity, and that these heterogeneities can be passed over multiple generations 

at a given rate, so long as the genome remains stable. In other words, a specific growth rate or 

karyotype, may not be passed, but the overall degree of heterogeneity can be passed when the 

genome is unstable. This data also demonstrates that the stability of a cell population is not a static 

feature, and as the degree of genome instability changes, the degree of heritable heterogeneity will 

also change, which can be reflected in the frequency of novel, stochastic chromosome change.  

Discussion 

 The mechanism of fuzzy inheritance has significant implications in the biological sciences. 

Notably, it explains how cell populations maintain and regulate their heterogeneity, which is 

necessary for understanding and treating most cancers. At the surface these results may seem 

obvious, as it is commonly known that unstable cells will generate unstable cells. However, the 

data presented above demonstrated the mechanism of why an unstable cell population can pass 

heterogeneity without directly passing the same genome (system inheritance). 

 Can heterogeneity be inherited?  

 Can heterogeneity be considered a heritable feature? Inheritance can be defined as the 

actual passing of traits from the parent(s) to offspring. Here, a mother cell represents the parent 

and the daughter cell population is the offspring. The level of heterogeneity in a cell population 

represents an important biological trait. Therefore, the level of heterogeneity is a form of bio-

inheritance. There are different types of inheritance that can be passed. The first is “parts 

inheritance” which is mediated by the DNA-level (Heng et al. 2011a, Heng et al. 2011b, Heng et 

al. 2013a). Under normal conditions, DNA is passed from mother cell to daughter cell, where the 

daughter cell receives a near identical copy of the mother cell’s DNA sequence. When the cells 
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are unstable, as in most cancers, a near identical sequence is not passed from mother cell to 

daughter cell due to genome and gene-level aberrations that continuously change. A second type 

of inheritance is genome-defined system inheritance (Heng 2009, Heng et al. 2011a). Under 

normal conditions, a mother cell will pass its genome-defined system inheritance (represented by 

a specific karyotype) to its daughter cell. In cancer, most of which are genomically unstable, a 

different genome is passed, and therefore system inheritance is lost. Taken together, the above 

types of inheritance embody a form of genetic transmission for genomically unstable cells. The 

genetic information from both the DNA parts level and the genome level, but with much less 

accuracy than normal cells with genomically stable cells. Along with the “parts” and altered system 

inheritance, what else is passed? 

 The pattern of inherited traits (karyotype, growth rate) was compared at the single cell level 

for cells that were “clonal” (by descent). However, for each of the traits analyzed, a specific growth 

rate or karyotype were not passed. Rather, the level of heterogeneity was passed. This is 

demonstrated in a model shown in Figure 27, which explains how fuzzy inheritance is linked to 

different types of heterogeneities in both normal stable and unstable cell populations. Each circle 

with a different color represents a cell with a unique karyotype. In the normal situation when cells 

are genomically stable, most cells have the same karyotype. There are, however, some cells  

with aberrant genomes that are outliers. Here, a single isolated cell can pass the same genome-

defined system inheritance (karyotype) to its daughter cells. As in the parent cell population, cells 

with aberrant genomes will be present in the same frequency, but the specific aberrant genome 

will be different than the one found in the parent cell population. Thus, the heterogeneity of the 

parent cell population is restored. In unstable cell populations, an isolated single cell is unable to 

pass a specific karyotype. Rather, the unstable cell will pass down the ability to generate 
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heterogeneity, as all cells in the daughter cell population each have unique karyotypes that were 

not present in the parent cell population. The specific karyotypes will be different, but a similar 

degree of heterogeneity is inherited. Therefore, in both stable and unstable cell populations, the 

degree of heterogeneity is restored. The data demonstrates the restoration of heterogeneity, as cells 

did not pass down a specific growth rate or genome, but a range of altered genomes and growth 

rates. Therefore, the ability to generate heterogeneity was passed. 

 

Figure 27: Model of fuzzy inheritance 

 

 

Model of fuzzy inheritance. In the diagram, each different colored circle represents a cell with a 

unique genome. Each cell population exhibits a given degree of heterogeneity, and that same 

degree of heterogeneity can be passed to future generations. A) A smaller degree of heterogeneity 

is present in stable cell populations. A single cell isolated from a stable cell population will pass 

that same genome to its daughter cell population, along with a small degree of heterogeneity in the 

form of outlier cells. The outlier cells that exhibit stochastic genome level change are present in 

the quantity, but the specific stochastic genome level changes will not be passed. B) Unstable cell 

populations exhibit a larger degree of heterogeneity.  A single cell isolated from an unstable cell 

population will not pass the same genome to its daughter cell population, but rather an array of 

heterogeneous genomes. The specific NCCAs will not be passed between generations, but the 

frequency of cells with stochastic genome level change will remain the same.  
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Another important feature of fuzzy inheritance is that the pattern of inheritance can be 

predicted from generation to generation, even though the specific karyotypes are not predictable.  

A smaller degree of heterogeneity is in stable cell populations and can be expected in its future 

daughter cell populations. This was observed in karyotypically stable HCT116 cells. Isolation of 

fast- and slow- growing subclones displayed the same small degree of genome and growth 

heterogeneity, or homogeneity, as the parent cell population. In large part, the same karyotype is 

expected to be passed down, along with a given number of cells with aberrant genomes. In a similar 

fashion, fast- and slow- growing subclones isolated from unstable Sub1 cells displayed the same 

high degree of genome and growth heterogeneity as the parent cell population. In unstable Sub1 

cells, which specific karyotype that will become dominant cannot be predicted, however the degree 

of novel change can be predicted. The predictability of NCCA frequency has been observed in a 

mouse model of Atm -/- mice (Heng et al. 2006c). Spectral karyotyping was completed on cells 

kept in continuous cell culture isolated originating Atm -/- mice over several time-points. Genomic 

analysis was completed, and it was demonstrated that it was difficult to predict which specific 

genome would become dominant. The NCCA frequency, however, was found to be predictable. 

 Another important feature of fuzzy inheritance is that different cell populations have 

different degrees of heterogeneity, which is defined by the ratio of NCCAs to CCAs, or the 

karyotype profile.  The frequency of NCCAs displayed by any given cell population or cell line is 

related to chromosome instability. Interestingly, a certain degree of genome heterogeneity has been 

found even among normal tissue. For example, mammalian liver cells exhibit a high degree of 

polyploidy that range from 2N-16N (Biesterfeld et al. 1994, Gupta 2000, Duncan et al. 2010, 

Duncan et al. 2012). Additionally, a small number of NCCAs have been found in human white 
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blood cells (Heng, unpublished data).  Fuzzy inheritance is also found in normal cells that have 

identical karyotypes. 

 The data presented in this chapter demonstrates the mechanism of fuzzy inheritance at the 

karyotype level. Many published studies also support the existence of fuzzy inheritance at other 

genetic levels, such as the gene and epigenetic levels. For example, large scale single cell of breast 

cancer cells have discovered a large degree of de novo gene mutations (Wang et al. 2014). At the 

epigenetic level, heterogeneity of methylation patterns have been shown in multiple normal and 

disease tissue types (Landan et al. 2012, Schultz et al. 2015). Finally, a recent study conducted 

yeast documented that a low degree of karyotype heterogeneity is maintained, and that the degree 

of heterogeneity is higher than the baseline mitotic error rate (Zhu et al. 2015). 

 The significance of fuzzy inheritance 

 The biggest obstacle facing currently facing cancer research is heterogeneity. Fuzzy 

inheritance explains the cellular basis of heterogeneity; therefore, these findings are crucial to 

understanding most cancer types. Clonal expansion is the mechanism by which normal cells and 

cancers with stable cells can inherit the same system inheritance, or identical karyotype. However, 

in unstable cancers, clonal expansion does not occur as a single cell that is unstable cannot pass 

down an identical karyotype to its daughter cell. These variant cells pass down the ability to 

generate heterogeneity, leading to daughter cell populations with altered genomes but the same 

degree of genomic diversity at the population level. The new daughter cell population has a similar 

degree of genome level heterogeneity, which is inherited, but each cell has completely different 

genomes, which are not inherited. Therefore, in unstable cells, evolvability, or the potential 

generate change, is passed down while the genome-based system inheritance is not passed. 
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 Fuzzy inheritance may offer a reason why theoretical models of clonal evolution do not 

accurately describe cancer evolution in the natural situation. Clonal evolution has been observed 

in more stable cancer types like chronic myelogenous leukemia (CML). However, the CML 

example can be considered as an exception (Horne et al. 2013). Most cancer types are genomically 

unstable and evolve in the macro-cellular punctuated phase where genome-level heterogeneity is 

high and the direct passage of genetic change is not traceable. Models of clonal evolution are based 

on the assumption that cell populations are genomically clonal, however this is not the case in the 

natural situation as clonal genomic aberrations cannot be detected due to the instability of most 

cancer types. 

 Fuzzy inheritance also addresses cancer therapy and why unstable cancers are very difficult 

to treat. Heterogeneity is the biggest obstacle for the effective treatment of cancer. The mechanism 

of fuzzy inheritance illustrated that the degree of heterogeneity is passed, giving future cell 

populations evolutionary potential by restoring the degree of genome heterogeneity. When a tumor 

is treated with any cancer treatment, most cells are killed and only a few survivors remain. These 

survivors have the ability to recapitulate the same degree of genomic heterogeneity that was 

present before initial treatment. Even though the specific karyotypes are different, the degree of 

heterogeneity and evolutionary potential is still the same and can be applied against new treatment 

(Heng 2016). Therefore, using the same initial treatment will be as useful in treating future cell 

populations. Fuzzy inheritance also explains why clonal cell populations are much easier to treat, 

as most cells display specific targets that can be eliminated and the amount of instability-mediated 

fuzzy inheritance is significantly lower. Cell populations that have a high degree of genome 

heterogeneity are often unstable and can survive through the mechanism of fuzzy inheritance. 

Furthermore, drug treatment can also increase the degree of genome-level heterogeneity (Liu et al. 
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2014). Fuzzy inheritance can explain why clonal expansion can be detected in cancers with more 

stable karyotypes. Additionally, fuzzy inheritance can explain why clonal expansion can be 

detected under experimental laboratory conditions, as highly homogeneous animal models are 

used and a single factor tested favors the emergence of clonal karyotypes. However in natural 

settings, multiple factors are involved in the formation of a solid tumor which are highly dynamic, 

and instability-mediated fuzzy inheritance becomes the dominant feature (Heng 2013b).  

 Fuzzy inheritance is most visible in cancer, however it is a feature that is universally 

shared in all cell populations. In contrast to conventional inheritance mechanisms that are precise, 

fuzzy inheritance is less precise that allows for a given degree of heterogeneity in a cell population. 

The heterogeneity that is passed has significant biological importance, as it gives a cell the 

potential to adapt to fluctuating environments. Cells populations that exhibit more precise 

inheritance, having more clonal karyotypes, are less likely to survive stress conditions. Many 

examples of fuzzy inheritance are found in the literature and are listed in Table 3. For example, 

under growth restricted conditions, bacteria cell populations will employ an error-prone DNA 

polymerase that will induce mutations (Ponder et al. 2005).  The mutagenic mechanism that 

employs the error-prone polymerase lends the cell population adaptability necessary for survival 

by providing greater variability in the passing of its system inheritance. When the cell population 

returns to homeostatic conditions, the cell will switch back to a normal polymerase that allows a 

bacterial cell to divide with high fidelity. Interestingly, pathological conditions found in nature are 

often under stress conditions, while most laboratory settings are stable. This suggests that 

inheritance in natural conditions are fuzzier, and fuzzy inheritance represents the principle form of 

inheritance under very stressful conditions (for example most cancers) for somatic cell 

populations. 
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 It is necessary to highlight an important distinction between the inheritance processes of 

germline cells and somatic cells. Inheritance in germline cells requires precision. This is because, 

for the survival and reproductive success of an individual, an identical karyotype must be passed 

from parents to offspring. However, for somatic cells, inheritance need not be precise. In fact, it 

may actually be advantageous for a cell population to exhibit genome-level heterogeneity, even in 

normal somatic tissue (Duncan et al. 2012, Horne et al. 2014). If every cell in a cell population 

had identical genomes, the cell population as a whole would not survive a stress event. But those 

cell populations that exhibit some degree of genome-level heterogeneity can actually survive, as 

they exhibit diversity and thus adaptability that are necessary for survival (Horne et al. 2014). 

Fuzzy inheritance facilitates this process, as it allows for a cell to pass a given degree of 

heterogeneity or instability to future cell populations. Altogether, this indicates that there is a type 

of inheritance for germline cells that requires precision to maintain or pass the same karyotype 

over multiple generations, and a different type of inheritance, fuzzy inheritance, that is needed and 

dominant during an individual’s lifespan.  

 Fuzzy inheritance is also demonstrated at the DNA sequence level (Lodato et al. 2015). 

Single cell sequencing was performed on 36 neurons isolated from the cerebral cortex of three 

healthy individuals. Single cell single nucleotide variants (SNVs) were identified and occurred at 

a very high rate. On average, each neuron exhibited 1,685-1793 SNVs, where the number of SNVs 

were tightly clustered among single neurons of the same individual. This supports fuzzy 

inheritance, as the degree of SNVs is the same across each cell for each individual. 
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Table 3: Examples of Fuzzy inheritance in the literature 

 

Information level Citation   

Genome level  (Heng et al. 2006c) 

Genome level (Heng 2007c) 

Genome level  (Lawrenson 2010) 

Genome level  (Liu et al. 2014) 

Genome level  (Zhu et al. 2015)  

Genome level  

Genome level  

(Duesberg and McCormack 2013) 

(Bakker et al. 2016) 

Transcriptome level (Stevens et al. 2014) 

Transcriptome level (Lawrenson 2010) 

Transcriptome level (Creekmore et al. 2011) 

Transcriptome level (Lee et al. 2014) 

Transcriptome level (Durfee et al. 2010) 

Transcriptome level (Chang et al. 2008) 

Gene expression (Gupta et al. 2011) 

DNA sequence level (Lodato et al. 2015) 

DNA sequence level (Cannella et al. 2009) 

DNA sequence level (Ponder et al. 2005) 

DNA sequence level (Long et al. 2016) 

Epigenetic level (Cerulus et al. 2016) 

Epigenetic level (Farlik et al. 2015) 

Cell growth (Keren et al. 2015) 

Cell growth  (Sandler et al. 2015) 

 

\ 

 

Published studies that support or are evidence of fuzzy inheritance. 
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 Another example of fuzzy inheritance illustrates the inheritance of growth heterogeneity 

(Sandler et al. 2015). L1210 cells, a genomically unstable murine leukemia cell line that forms 

tumors in mice (Teicher 2006) were transfected using Fucci vectors, and the growth rates of single 

cells were monitored over several generations. Fucci vectors allow for the monitoring of cell cycle 

duration of living cells in real time, as G1 is distinguished from S/G2 by color. Red fluorescent 

protein (RFP) is tagged onto cdt1, which is active in G1, therefore cells in G1 are red. Geminin is 

tagged with green fluorescent protein (GFP), and as Cdt1 is degraded and geminin is expressed in 

S and G2, the cell turns green. Single cell times were analyzed over several generations, and it was 

found that cell cycle times between mother cells and daughter cells were not correlated, as daughter 

cells exhibited a variety of growth rates that were not similar to the mother cell growth rate. This 

supports fuzzy inheritance, as a mother cell could not pass down a specific growth rate, but did 

pass a range of growth rates. 

 While we only demonstrate fuzzy inheritance at the genome level, fuzzy inheritance can 

be observed and should be quantitatively demonstrated at the gene and epigenetic levels. Further 

research is also needed to understand the relationship between different types of inheritances (at 

different genetic levels) and whether system inheritance can be stably passed under stressful 

conditions. Fuzzy inheritance can lead to new and exciting developments in biological research, 

and specifically cancer research. 
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CHAPTER 5: CONCLUSION AND DISCUSSION 

Summary  

 In this dissertation, the novel mechanism of fuzzy inheritance was presented. According to 

fuzzy inheritance, a cell population exhibits a given degree of heterogeneity, and that same degree 

of heterogeneity is passed to future cell generations. The following observations support this 

hypothesis. First, it was demonstrated that single cells isolated from genomically unstable cell 

populations could not pass a specific karyotype (system inheritance). Instead, single unstable cells 

passed instability-mediated heterogeneity, and generated daughter cell populations with an array 

of heterogeneous karyotypes. This was demonstrated in chapters 3 and 4 in single-cell derived 

subpopulations that were isolated from unstable ex-vivo wild type and conditionally inactivated 

Brca1/p53 MOSE cell populations. SKY analysis of each single-cell derived subpopulation that 

originated from a genomically unstable parent cell population exhibited distinctly different 

karyotypes consistent with punctuated evolution, where the degree of novel change was the same 

for each subpopulation. In contrast, cells isolated from stable cell populations could be cloned, as 

the same karyotype was passed to future cell populations. This was demonstrated in chapter 4, 

where single cells isolated from karyotypically stable HCT116 cells all exhibited similar 

karyotypes and minimal genome-level change. 

 Second, a single unstable cell could not pass a specific growth rate. In chapters 3 and 4, 

single cell in-situ growth experiments were completed in single-cell derived cell populations with 

varying degrees of genome instability. Among unstable cells, single cells exhibited a large degree 

of growth heterogeneity, where most cells grew at a slow or moderate rate and only few cells 

exhibited very high proliferation. To detect if heterogeneity was present at the earliest cell 

divisions, daily growth rates were calculated and demonstrated that heterogeneity was present at 
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the earliest cell divisions and remained constant for the duration of the assay. Altogether this 

indicates that single cells did not pass down a single growth rate, but rather passed growth 

heterogeneity. In contrast, stable cells were able to pass a specific growth rate, as cells all exhibited 

relatively the same growth rate. 

 Third, it was demonstrated that unstable cells did not inherit a specific growth rate or 

genome, even after repeated selection. Single cell in-situ growth experiments (Chapter 4), where 

fast- and slow- growing colonies were isolated over several generations to determine if a specific 

genome or growth rate can be inherited. In unstable cells, repeated selection of fast- or slow- 

growing colonies always produced cell populations that exhibited a heterogeneous array of growth 

rates, not a specific growth rate. Spectral karyotyping of select generations found that no specific 

genome was passed after repeated selection, as cells with heterogeneous genomes were present. In 

contrast, repeated selection in stable cells found that a growth rate and specific genome could be 

selected. This indicates that, so long as the genome is unstable, specific features like growth rate 

or karyotype cannot be inherited, and heterogeneity is passed. 

 Fourth, it was demonstrated that genome heterogeneity is linked to other heritable features 

of the system, like growth heterogeneity. In chapters 3 and 4, single cell in-situ growth experiments 

were completed in different cell lines with different degrees of genome instability. Results 

demonstrated that growth heterogeneity increased in cell populations with higher levels of genome 

instability, providing a direct link between genome heterogeneity and growth heterogeneity. 

 Fifth, outliers dominate cell population dynamics in unstable cell populations. Single cell 

in-situ growth assays in unstable cells completed in chapters 3 and 4 demonstrated that most cells 

grew at a slow to moderate rate while only few outlier cells were highly proliferative. These highly 

proliferative outlier cells were largely responsible for repopulating the majority of the next 
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generation of cells. In contrast, single cell growth assays of genomically stable cells demonstrated 

that each single cell made approximately the same contribution in repopulating the next generation 

of cells. This indicates that outlier cells dominate cell population dynamics in cell populations that 

are genomically unstable, as they are the cells that generate future cell populations. 

 Finally, it was demonstrated that the statistical average is not a suitable measure for cell 

populations that are unstable, however it can reliably be used for genomically stable cell 

populations. Single cell SKY and growth assays in chapter 3 demonstrated that an average, 

composite karyotype or average cell growth is not representative of the entire cell population. 

However, in stable cells, the average could be used to accurately assess the cell population. This 

indicates that in cell populations that are unstable, single cell analysis is needed to accurately 

characterize a cell population. 

 Altogether, the above supports the novel cellular mechanism of fuzzy inheritance. Figure 

23 (in Chapter 4) shows a mechanism for how both stable and unstable cell populations can pass 

a given degree of heterogeneity to daughter cell populations. A small degree of heterogeneity exists 

in stable cell populations. A single cell isolated from the stable cell population will pass that same 

karyotype, producing a daughter cell population that is mostly genomically clonal, but also exhibits 

the same degree of heterogeneity. The specific features of the outlier cell may be different, but the 

frequency will remain the same. In other words, the specific NCCAs present will not be passed, 

they will be replaced by new NCCAs at every generation. In contrast, a single cell isolated from 

an unstable cell population will produce a daughter cell population of unstable cells with the same 

degree of genome-level heterogeneity. Again, the specific NCCAs will not be passed and will 

change in the next generation, but their frequency will remain the same so long as the genome 

status is unchanged. 
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Future directions 

The work completed in this dissertation characterizes the mechanism of fuzzy inheritance 

at the genome level. However, future work is needed in order to directly detect fuzzy inheritance 

at other genetic and non-genetic levels, such as the DNA sequence level and epigenetic levels, to 

determine how different types of heterogeneities are linked. For example, how does changing the 

rate of heterogeneity at one genetic level affect the rate of heterogeneity at other levels? Genome 

heterogeneity has been previously linked with transcriptome heterogeneity and growth 

heterogeneity. Therefore, it is likely that a similar relationship between genome heterogeneity and 

DNA sequence heterogeneity, or genome heterogeneity and epigenetic heterogeneity also exist. 

 In order to detect fuzzy inheritance at the DNA sequence and epigenetic levels and 

understand how it relates to genome-level fuzzy inheritance, a single-cell based approach that 

analyzes the frequency of de novo change at each molecular level (genome, DNA sequence, 

epigenetic) is proposed. An in-vitro cell culture system is the most ideal experimental system, as 

it allows for the monitoring of evolution in action in real time. Cells can be isolated at any time-

point for analysis including different phases of cellular evolution. For example, a paired cell 

culture system with known long-term stability and instability is crucial for detecting fuzzy 

inheritance at different cellular passages. Paired cell culture systems that fit these criteria are:  

MDAH-041 cells at passage 25 (which is an unstable passage), and passage 54 (which has known 

long-term stability). Wild type HCT116 cells are also known for the long-term karyotypic stability, 

and can be paired with HCT116 with a p53 knockout. The karyotypic stability of the cell line must 

be validated over multiple time-points to ensure long term stability prior to any experiments. 

Finally, the detection of fuzzy inheritance must be completed at the single cell level, as average-
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based approaches would smooth out the variation that is needed to identify marks of fuzzy 

inheritance.  

In order to detect fuzzy inheritance in single cells over multiple generations, single cells 

will be isolated from stable and unstable cell populations and cultivated, similar to the experiments 

completed in this dissertation. Single cell growth experiments will be performed and specific 

colonies of varying sizes will be repeatedly selected over multiple generations. At each generation, 

the growth (single cell in situ growth will be monitored), genome (spectral karyotyping), DNA 

sequencing (whole genome sequencing) and epigenetic profiling (whole genome bisulfite 

sequencing) will be completed. The following parameters will be measured to detect fuzzy 

inheritance: growth heterogeneity (single cell growth); NCCA frequency (genome); de novo 

mutations (whole genome sequencing); and differentially methylated regions (epigenetic 

profiling). 

It is anticipated that the integration of all data types will demonstrate that different types 

of heterogeneities are linked in a dynamic relationship. By comparing the rate of stochastic 

genome-level change to the rate of stochastic gene mutation or epigenetic change, it will be 

revealed that fuzzy inheritance operates at other molecular levels by passing a given degree of 

change. Specifically, in unstable cell populations where the rate of genome level stochastic change 

is high or increases, the rate of de novo gene mutations or the number of differentially methylated 

regions will also increase. In a similar fashion, as the frequency of genome level stochastic change 

decreases, the rate of de novo gene mutations and differentially methylated regions will also 

decrease. 

At the same time, the integration of this data will also put into context the importance and 

impacts of different types of heterogeneities. Specifically, genome level change impacts the global 



www.manaraa.com

  117 
 

cellular and molecular dynamics of a cell, whereas a gene mutation or epigenetic change impacts 

molecular dynamics on a more local scale. In other words, a single balanced or unbalanced 

structural change can alter the activities of hundreds to thousands of genes. The emergent 

properties and cellular networks have changed. In comparison, a single gene or epigenetic change 

may only alter the effect of a handful genes, keeping the global cellular networks intact. In a 

population full of single, unstable cells. where each cell exhibits balanced and/or unbalanced 

change, the complexity of the cellular dynamics is magnified. Altogether, this data would confirm 

that genome level change is the significant type of change, and the monitoring of stochastic 

genome level change is the first step towards understanding the maintenance of cellular 

heterogeneity.  

A number of studies support the above anticipated findings. First, genome heterogeneity  

has been previously linked to transcriptome heterogeneity (Stevens et al. 2014). Second, a number 

of genome sequencing studies have completed concurrent copy number profiling and gene 

expression found that some different heterogeneities may be linked (Bashashati et al. 2013, 

Gerlinger et al. 2014, Bakker et al. 2016). It was found that patients with increased heterogeneity 

of copy number alterations between regions also exhibited increased heterogeneity of 

transcriptome profiles or mutation heterogeneity, suggesting that the different types of 

heterogeneities are linked. Third, our unpublished data has suggested that a high degree of stress 

can elevate both genome alterations and DNA dynamics, based on the status of SNPs. 

Surely, this new information will not only shape the knowledge basis of future genetics 

and genomics research, but also identify the most suitable level for studying the genetic basis for 

specific types of human diseases. 

Precision medicine 
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Precision medicine is the latest initiative intended to find new ways to effectively fight and 

treat cancer and other common/complex diseases (Collins and Varmus 2015). Precision medicine 

refers to the integration and application of genomic technologies into improved and more precise 

clinical diagnostics and treatment recommendations, as well as the incorporation of more genomic 

techniques in drug development. It is similar to the previous initiative, personalized medicine, in 

that it seeks to translate precise molecular information for clinical use, but also different as it 

emphasizes a systems approach. As ‘omic technologies become less expensive, the integration of 

patient genetic and nongenetic profiles for improved clinical care has become the new reality. 

Precision medicine has seen some success stories (Katsnelson 2013) and several clinical trials are 

currently underway. 

Despite the renewed hopes that precision medicine has generated, its successes may be 

limited (Heng 2016). First, this approach does not consider heterogeneity. Cancer is an 

evolutionary process where multi-level heterogeneity is a characteristic feature. As thoroughly 

discussed throughout this dissertation, the average profile does not accurately characterize a tumor 

cell population. The genetic/nongenetic profiles generated by the various ‘omic technologies 

represent an average population of a snapshot of the evolutionary process. While this does provide 

useful information about some cell population dynamics, it is still average-based, and reflects only 

more dominant subpopulations, thereby excluding some outlier cells that may emerge as dominant 

players in cancer evolution. 

Furthermore, following treatment, a phenomenon known as genome chaos occurs (Liu et 

al. 2014). Genome chaos is an adaptive macro-cellular evolutionary strategy that describes the 

massive genome rearrangement that occurs after a stress event, including chemotherapeutic 

treatment. After a major stressor is applied, chromosomes are fragmented, followed by a rejoining 



www.manaraa.com

  119 
 

process where chromosome fragments are randomly pieced together. The process of fragmentation 

and rejoining continues until a cell with a more stable genome is formed. Fuzzy inheritance 

mediates the process of genome chaos. During the rejoining process, chaotic genomes are 

repeatedly passed for a period of several weeks before a stable clone is selected, thereby providing 

the necessary variation for survival and evolution. Genome chaos is not about specific genetic 

features, but rather providing a variety of new genome systems for selection and evolution. This 

is consistent with fuzzy inheritance, as unstable cells pass an array of genomically heterogeneous 

cells, thereby increasing the evolutionary potential of a cell population. 

The clinical implications of genome chaos indicate that initiatives like precision medicine 

may see limited results. It is a paradox that most cancer researchers do not recognize: nearly all 

cancer researchers agree that cancer is an evolutionary process, but it is a stochastic process as 

well. A highly specific and precise genetic approach will not drastically improve unstable cancer 

diagnosis and treatment because as cancer evolves, the chromosome topology will change, and 

these changes cannot be predicted. Genetic/nongenetic variants that emerge as statistically 

significant or clinically actionable remain significant under that specific genome context (specific 

genome), and with new genome changes, new significant variants will emerge. In other words, the 

idea that cancer diagnosis and treatment can be predicted by several genetic/nongenetic markers 

may be less significant when these genes are put into the context of massively rearranged genomes. 

What can we precisely target if the targets themselves are always changing? A re-evaluation of 

cancer therapy that recognizes the ultimate importance of the genome and genome-level 

rearrangements is necessary for new discoveries in cancer treatment and diagnosis (Horne S.D. 

2015b). 

Closing remarks 
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 Detecting fuzzy inheritance was a difficult and arduous task. Believing in fuzzy inheritance 

was another feat altogether. Regardless of what I believed to be true, I also had to trust and believe 

in my data. We were taught at a young age that inheritance is precise, that knowledge of our genes 

will unlock the secrets of our evolutionary history as well as our potential for the future, that our 

genomes are these rigid structures made to withstand massive amounts of stress. However, after 

examining the process of inheritance, especially in cancer cells, that inheritance is perplexing is 

an understatement. At the surface, it would seem that our experimental platforms and research 

results are working and are building upon our knowledge. However, synthesizing conceptual 

inheritance with the massive data that has been generated indicates that perhaps, inheritance is 

understood less than we believe. Genetic inheritance is not the transmission of the beautiful and 

picturesque chromosomes so perfectly positioned in a nucleus, particularly in cancer. In unstable 

cells, it is messy and chaotic. Our DNA sequence may not carry the untold secrets of life, as 

currently, heritability is still missing. And our genome is not an unbreakable structure that has 

withstood thousands of years of evolution. It changes more frequently than expected, maybe more 

so. While some may find this disappointing, it is actually quite exciting, as it paves the way for 

new and exciting research. It renews my passion for scientific discovery, and I am excited for what 

the future will bring.  
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HH. (2014) “Ovarian cancer evolution through stochastic genome alterations: defining 

the genomic role in ovarian cancer.” Systems Biology in Reproductive Medicine. 60(1): 

2-13. 
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HH. (2013) “Single cell heterogeneity: why unstable genomes are incompatible with 
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 Multi-level heterogeneity is a characteristic feature of cancer cell populations. 

However, how a cell population regulates and maintains its cell population heterogeneity is not 

well understood. Based on conventional theories of genetic inheritance, cell division is precise, 

where a daughter cell inherits an identical karyotype, more or less, from its mother cell. Errors that 

are generated during cell division occur at low frequencies and accumulate over prolonged time 

periods to accumulate. However, the overwhelming heterogeneity found in unstable cancers is 

largely inconsistent with current models of genetic inheritance. In order to determine the 

mechanism of how heterogeneity is regulated, the pattern of inherited traits, including karyotype 

and growth rate, are compared in cell lines with different degrees of genome instability. Single cell 

and population-based assays were conducted and illustrate the following: 1) single unstable cells 

cannot pass a specific karyotype or growth rate and instead pass a heterogeneous array of 

karyotypes and growth rates; 2) genome heterogeneity is linked to other heterogeneous features of 

the system, like growth heterogeneity; 3) cells that are outliers dominate cell population dynamics 

when the cell population is unstable; and 4) the statistical average does not give an accurate 

portrayal of unstable cell populations. Altogether, this suggests that genome instability leads to 
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genome replacement-mediated macro-cellular evolution that precludes the clonal expansion of a 

few abnormal cells; and 2) a given degree of heterogeneity can be inherited from a single cell. 

Because a given degree of heterogeneity is inherited, and the specific variants change between cell 

passages, this inheritance is termed fuzzy inheritance. According to fuzzy inheritance, rather than 

passing specific changes, the potential to generate genomic variation is passed. Fuzzy inheritance 

provides a cell population with the necessary evolvability and explains how heterogeneity is 

regulated and maintained in normal tissue and in cancer cells.   



www.manaraa.com

  158 
 

AUTOBIOGRAPHICAL STATEMENT 

 

Education 

 

PhD, Molecular Biology and Genetics                                               Summer 2016 

Wayne State University School of Medicine                Detroit, MI 

 

Masters in Public Administration               Summer 2009  

University of Michigan                         Dearborn, MI 

            

Bachelor of Arts, Integrated Science & History        Winter 2004 

University of Michigan                                Dearborn, MI   

 

Selected Publications 

 

Abdallah BY, Horne SD, Liu G, Stevens JB, Ye CJ, Bremer SW, Gorelick,R, Krawetz SA, 

Heng HH. “Fuzzy inheritance: a novel form of inheritance that regulates tumor heterogeneity.” 

(submitted) 

Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, Ye CJ, Chen, DJ, Heng HH. 

(2015) “Genome Chaos: survival strategy during crisis.” Cell Cycle. 13(4): 528-537. 

Stevens JB, Liu G, Abdallah BY, Horne SD, Ye KJ, Bremer SW, Ye CJ, Krawetz SA, Heng 

HH. (2015) “Unstable genomes elevate transcriptome dynamics.” Int J Cancer. 134(9): 2074-

2087. 

Abdallah BY, Horne SD, Kurkinen M, Stevens JB, Liu G, Ye KJ, Barbat J, Bremer SW Heng 

HH. (2014) “Ovarian cancer evolution through stochastic genome alterations: defining the 

genomic role in ovarian cancer.” Systems Biology in Reproductive Medicine. 60(1): 2-13. 

Abdallah BY, Horne SD, Stevens JB, Liu G, Ying AY, Vanderyhyden B, Krawetz SA, Heng 

HH. (2013) “Single cell heterogeneity: why unstable genomes are incompatible with average 

profiles.” Cell Cycle. 12(23): 3640-3649. 

Selected Oral Presentations 
 

Inherited heterogeneity: a novel from of inheritance that regulates tumor 

heterogeneity 

Center for Molecular Medicine Seminar Series 

Wayne State University School of Medicine. Detroit, MI 
 

Single cell heterogeneity of cancer cell populations: why unstable genomes are 

incompatible with average profiles 

Graduate Student Research Day 

Wayne State University School of Medicine. Detroit, MI 
 

Nonclonal chromosomal aberrations as genomic markers of ovarian cancer 

Michigan Alliance for Reproductive Technologies research symposium Detroit, MI 

 

Oct 2014 

 

 

 

Sept 2013 

 

 

 

 

May 2012 

 


	Wayne State University
	1-1-2016
	Fuzzy Unheritance: A Novel Form Of Somatic Cell Inheritance That Regulates Cell Population Heterogeneity
	Batoul Abdallah
	Recommended Citation


	tmp.1481066073.pdf.7xBzg

